Cho tam giác ABC nhọn. Trên nửa mặt phẳng bờ AB không chứa C dựng đoạn thẳng AD vuông góc với AB và AD = AB, Trên nửa mặt phẳng bờ AC không chứa điểm B dựng đoạn thẳng AE vuong góc với AC và AC = AE, Vẽ AH vuông góc với BC, Đường thẳng HA cắt DE ở K. Chứng minh: K là trung điểm của DE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b.
Trên tia đối của MA lấy điểm N sao cho MA=MN.
Kẻ \(DF\perp AM\left(F\in AM\right)\)
Tí nữa tớ hướng dẫn cho
Hình đẹp lắm lè
kẻ DO _|_ AH tại O
EI _|_ AH tại I
có góc OAD + góc BAD + góc BAH = 180
góc BAD = 90 do AD _|_ AB (gt)
=> góc OAD + góc BAH = 90 (1)
DO _|_ AH (Cách vẽ) => góc DOA = 90
=> góc ODA + góc DAO = 90 (2)
(1)(2) => góc ODA = góc BAH
xét tam giác ODA và tam giác HAB có : góc BHA = góc DOA = 90
AD = AB (gt)
=> tam giác ODA = tam giác HAB (ch - gn)
=> DO = AH (định nghĩa) (3)
làm tương tự với tam giác AHC và tam giác EIA
=> AH = EI (4)
(3)(4) => DO = EI
có EI; DO _|_ AH (cách vẽ)=> EI // DO => góc IEK = góc KDO (định lí)
xét tam giác ODK và tam giác IEK có : góc DOK = góc EIK = 90
=> tam giác ODK = tam giác IEK (cgv - gnk)
=> DK = KE mà K nằm giữa D và E
=> K là trung điểm của DE
Để chứng minh rằng BD = CE và BD vuông góc với CE, ta sẽ sử dụng một số kiến thức về tam giác và hình học.
a) Để chứng minh BD = CE, ta sẽ sử dụng tính chất của tam giác vuông. Vì AD = AC và góc BAD = góc CAE = 90 độ, nên tam giác ABD và tam giác ACE là hai tam giác vuông cân. Do đó, ta có AB = AC và góc ABD = góc ACE. Từ đó, ta có thể kết luận rằng BD = CE.
b) Để chứng minh BD vuông góc với CE, ta sẽ sử dụng tính chất của đường thẳng vuông góc. Vì AD vuông góc AC và AE vuông góc AB, nên ta có thể kết luận rằng đường thẳng BD là đường thẳng vuông góc với đường thẳng CE.
Với các bước chứng minh trên, ta đã chứng minh được rằng BD = CE và BD vuông góc với CE trong tam giác ABC nhọn.