K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2021

Toạ độ vecto : 

\(\overrightarrow{ab}\) (15,-15).

\(\overrightarrow{ac}\)(21,-7).

+\(\overrightarrow{bc}\)(6,8).

Gọi h (x,y) là toạ độ trực tâm.

Có: \(\overrightarrow{ah}\left(x+17,y-10\right)\)\(\overrightarrow{bh}\left(x+2,y+5\right)\).

H là trực tâm nên ta có: \(\left\{{}\begin{matrix}\overrightarrow{ah}.\overrightarrow{bc}=0\\\overrightarrow{bh}.\overrightarrow{ac}=0\end{matrix}\right.\)

         <=> \(\left\{{}\begin{matrix}6.\left(x+17\right)+8.\left(y-10\right)=0\\21.\left(x+2\right)-7.\left(y+5\right)=0\end{matrix}\right.\)

         => x = -1 , y =-2.

Vậy toạ độ trực tân h là (-1,-2)

 

30 tháng 4 2022

Ta có :

góc A + góc  B + góc C  = 1800

hay 900 + 400 + góc C = 1800

C = 180 - ( 90 +40)

góc C = 500

Trong △ABC vuông tại A có

góc A > góc C > góc B 

hay BC > AB > AC

3 tháng 1 2019

66,125

Câu 17: Cho ABC có  AB = AC và  = 2   có dạng đặc biệt nào:A.  Tam giác cân                               B. Tam giác đều      C.   Tam giác vuông                          D. Tam giác vuông cânCâu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:A. 7cm                     B. 12,5cm                     C....
Đọc tiếp

Câu 17: Cho ABC có  AB = AC và  = 2   có dạng đặc biệt nào:

A.  Tam giác cân                               B. Tam giác đều      

C.   Tam giác vuông                          D. Tam giác vuông cân

Câu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:

A. 7cm                     B. 12,5cm                     C. 5cm                  D.

Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại: 

A. Đỉnh A             B. Đỉnh B             C. Đỉnh C                       D. Tất cả đều sai

Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?

A.  ABM  = ACM                                   B. ABM= AMC

C.  AMB= AMC= 900                             D. AM là tia phân giác CBA

Câu  21: Cho tam giác đều ABC độ dài cạnh là 6cm. Kẻ AH vuông góc với BC(H thuộc BC). Độ dài AH là:

          A. cm            B. 3cm                  C. cm             D. cm

Câu 22: Cho ABC= DEF. Khi đó:                             .

 A. BC = DF                                     B. AC = DF

   C. AB = DF                                   D. góc A = góc E    

Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:

A.   PQ =5cm           B. QR= 5cm            C. PR= 5cm              D.FE= 5cm                           

Câu 24. Cho tam giác MNP cân tại M, . Khi đó,

A.          B.             C.               D.

Câu 25 : Cho ABC= MNP  biết   thì:

A. MNP vuông  tại P                                                  B. MNP vuông  tại M          

C. MNP vuông  tại N                                                  D. ABC vuông tại A

1
15 tháng 3 2022

Câu 17: Cho ABC có  AB = AC và  = 2   có dạng đặc biệt nào:

A.  Tam giác cân                               B. Tam giác đều      

C.   Tam giác vuông                          D. Tam giác vuông cân

Câu 18Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:

A. 7cm                     B. 12,5cm                     C. 5cm                  D.

Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại: 

A. Đỉnh A             B. Đỉnh B             C. Đỉnh C                       D. Tất cả đều sai

Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?

A.  ABM  = ACM                                   B. ABM= AMC

C.  AMB= AMC= 900                             D. AM là tia phân giác CBA

Câu 22Cho ABC= DEF. Khi đó:                             .

 A. BC = DF                                     B. AC = DF

   C. AB = DF                                   D. góc A = góc E    

Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:

A.   PQ =5cm           B. QR= 5cm            C. PR= 5cm              D.FE= 5cm                           

16 tháng 7 2021

Áp dụng định lí pi ta go 

=> AB2 + AC2 = 289

Mà \(\dfrac{AB}{AC}\) = \(\dfrac{8}{15}\)=> (\(\dfrac{AB}{AC}\))2\(\dfrac{64}{225}\)

=> AC2=225 => AC = 15 => AB = 8

Ta có: AB.AC=BC . AH

=> AH = 120/17=7.06

=>BH = 3.76

=> CH = 13.24

Đúng thì like giúp mik nha bạn. Thx bạn

NV
24 tháng 3 2021

Tọa độ C là nghiệm \(\left\{{}\begin{matrix}x+2y-17=0\\4x+3y-28=0\end{matrix}\right.\) \(\Rightarrow C\left(1;8\right)\)

Đường thẳng BC nhận (1;2) là vtpt đường thẳng CK nhận (4;3) là vtpt

Do B thuộc BC, gọi tọa độ B có dạng: \(B\left(-2b+17;b\right)\Rightarrow\overrightarrow{BM}=\left(2b-16;6-b\right)\)

\(\Rightarrow\) Đường thẳng BM nhận \(\left(b-6;2b-16\right)\) là 1 vtpt

Do tam giác cân tại A \(\Rightarrow\widehat{MBC}=\widehat{KCB}\)

\(\Rightarrow\dfrac{\left|1.4+2.3\right|}{\sqrt{1^2+2^2}\sqrt{4^2+3^2}}=\dfrac{\left|1\left(b-6\right)+2\left(2b-16\right)\right|}{\sqrt{1^2+2^2}.\sqrt{\left(b-6\right)^2+\left(2b-16\right)^2}}\)

\(\Leftrightarrow2=\dfrac{\left|5b-38\right|}{\sqrt{5b^2-76b+292}}\)

\(\Leftrightarrow4\left(5b^2-76b+292\right)=\left(5b-38\right)^2\)

\(\Leftrightarrow5b^2-76b+276=0\Rightarrow\left[{}\begin{matrix}b=6\\b=\dfrac{46}{5}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}B\left(5;6\right)\\B\left(-\dfrac{7}{5};\dfrac{46}{5}\right)\end{matrix}\right.\)

Trường hợp B(5;6) loại do khi đó \(\overrightarrow{BM}=\left(-1;-2\right)\) cùng phương BC (vô lý)

Gọi N là trung điểm BC \(\Rightarrow N\left(...\right)\)

Đường cao AN qua N và nhận \(\overrightarrow{BC}\) là 1 vtpt  \(\Rightarrow\) phương trình AN

Đường thẳng AB qua B và vuông góc CK nên nhận (3;-4) là 1 vtpt \(\Rightarrow\) phương trình AB

\(\Rightarrow\) Tọa độ A là giao điểm AN và AB

Tính độ dài AN và BC \(\Rightarrow\) diện tích tam giác

13 tháng 3 2019

Ta có nửa chu vi của tam giác  p = 21 + 17 + 10 2 = 24 .

Do đó S = p p − a p − b p − c = 24 24 − 21 24 − 17 24 − 10 = 84 .

Chọn D.

15 tháng 7 2018

Theo đề bài ta có : \(\Delta DAB\)vuông cân tại D 

\(\Rightarrow A_1=45^o\)( bù nhau )

Kéo dài BD cắt AC tại F .

Xét \(\Delta ABF\)có : 

AD là đường phân giác đồng thời là đường cao 

\(\Rightarrow\Delta ABF\)cân tại A 

\(\Rightarrow AF=AB=8cm\)

Áp dụng định lí Py-ta-go ta có :

\(AC^2=BC^2-AB^2\)

\(\Rightarrow AC^2=17^2-8^2\)

\(\Rightarrow AC^2=225\)

\(\Rightarrow AC=\sqrt{225}=15\)

\(\Rightarrow CF=15-8=7cm\)

Xét tam giác BFC Có : \(EB=EC\left(gt\right)\)

\(DE//FC\)

=> DE là đường trung bình của tam giác BCF 

\(\Rightarrow DE=\frac{1}{2}CF=3,5cm\)(T/c đường trung bình )

18 tháng 3 2018

Có 15^2+8^2=289

      17^2=289

Vậy tam giác abc có ab^2+ac^2=bc^2 thì tam giác abc vg tại a

Có AH^2+HC^2=225

      AH^2+HB^2=64

Trừ 2 cái cho nhau thì (HC-HB)(HC+HB)=225-64=161

Mà HC+HB=BC=17 tự tính nốt