K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 3 2021

Tọa độ C là nghiệm \(\left\{{}\begin{matrix}x+2y-17=0\\4x+3y-28=0\end{matrix}\right.\) \(\Rightarrow C\left(1;8\right)\)

Đường thẳng BC nhận (1;2) là vtpt đường thẳng CK nhận (4;3) là vtpt

Do B thuộc BC, gọi tọa độ B có dạng: \(B\left(-2b+17;b\right)\Rightarrow\overrightarrow{BM}=\left(2b-16;6-b\right)\)

\(\Rightarrow\) Đường thẳng BM nhận \(\left(b-6;2b-16\right)\) là 1 vtpt

Do tam giác cân tại A \(\Rightarrow\widehat{MBC}=\widehat{KCB}\)

\(\Rightarrow\dfrac{\left|1.4+2.3\right|}{\sqrt{1^2+2^2}\sqrt{4^2+3^2}}=\dfrac{\left|1\left(b-6\right)+2\left(2b-16\right)\right|}{\sqrt{1^2+2^2}.\sqrt{\left(b-6\right)^2+\left(2b-16\right)^2}}\)

\(\Leftrightarrow2=\dfrac{\left|5b-38\right|}{\sqrt{5b^2-76b+292}}\)

\(\Leftrightarrow4\left(5b^2-76b+292\right)=\left(5b-38\right)^2\)

\(\Leftrightarrow5b^2-76b+276=0\Rightarrow\left[{}\begin{matrix}b=6\\b=\dfrac{46}{5}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}B\left(5;6\right)\\B\left(-\dfrac{7}{5};\dfrac{46}{5}\right)\end{matrix}\right.\)

Trường hợp B(5;6) loại do khi đó \(\overrightarrow{BM}=\left(-1;-2\right)\) cùng phương BC (vô lý)

Gọi N là trung điểm BC \(\Rightarrow N\left(...\right)\)

Đường cao AN qua N và nhận \(\overrightarrow{BC}\) là 1 vtpt  \(\Rightarrow\) phương trình AN

Đường thẳng AB qua B và vuông góc CK nên nhận (3;-4) là 1 vtpt \(\Rightarrow\) phương trình AB

\(\Rightarrow\) Tọa độ A là giao điểm AN và AB

Tính độ dài AN và BC \(\Rightarrow\) diện tích tam giác

NV
21 tháng 3 2021

Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x+y+1=0\\x-2y-2=0\end{matrix}\right.\) \(\Rightarrow B\left(0;-1\right)\)

Gọi vtpt của đường thẳng CM (cũng là đường cao kẻ từ C) có tọa độ \(\left(a;b\right)\)

H là chân đường cao kẻ từ B

\(cos\widehat{HBC}=\dfrac{\left|1.1+1.\left(-2\right)\right|}{\sqrt{1^2+1^2}.\sqrt{1^2+\left(-2\right)^2}}=\dfrac{1}{\sqrt{10}}\)

\(\Rightarrow cos\widehat{MCB}=cos\widehat{HBC}=\dfrac{1}{\sqrt{10}}=\dfrac{\left|a+b\right|}{\sqrt{a^2+b^2}.\sqrt{1^2+1^2}}\)

\(\Leftrightarrow\sqrt{a^2+b^2}=\sqrt{5}\left|a+b\right|\Leftrightarrow a^2+b^2=5\left(a+b\right)^2\)

\(\Leftrightarrow2a^2+5ab+2b^2=0\Leftrightarrow\left(a+2b\right)\left(2a+b\right)=0\)

Chọn \(\left(a;b\right)=\left[{}\begin{matrix}\left(2;-1\right)\\\left(1;-2\right)\end{matrix}\right.\) (trường hợp (1;-2) loại do song song BH)

\(\Rightarrow\) Phương trình đường cao kẻ từ C:

\(2\left(x-2\right)-1\left(y-1\right)=0\Leftrightarrow2x-y-3=0\)

Tọa độ C là nghiệm: \(\left\{{}\begin{matrix}x+y+1=0\\2x-y-3=0\end{matrix}\right.\) \(\Rightarrow C\left(...\right)\)

Gọi N là trung điểm BC \(\Rightarrow\) tọa độ N

Tam giác ABC cân tại A \(\Rightarrow\) AN là trung tuyến đồng thời là đường cao

\(\Rightarrow\) Đường thẳng AN vuông góc BC \(\Rightarrow\) nhận (1;-1) là 1 vtpt và đi qua N

\(\Rightarrow\) Phương trình AN

Đường thẳng AB vuông góc CM nên nhận (1;2) là 1 vtpt

\(\Rightarrow\) Phương trình AB (đi qua B và biết vtpt)

\(\Rightarrow\) Tọa độ A là giao điểm AB và AN

12 tháng 3 2021

H là trực tâm của tam giác nhỉ.

A có tọa độ là nghiệm của hệ\(\left\{{}\begin{matrix}2x-y+2=0\\x-2y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\Rightarrow A\left(-1;0\right)\)

B có tọa độ là nghiệm của hệ\(\left\{{}\begin{matrix}2x-y+2=0\\x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\Rightarrow B\left(0;2\right)\)

H có tọa độ là nghiệm của hệ\(\left\{{}\begin{matrix}x-2y+1=0\\x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{2}\end{matrix}\right.\Rightarrow H\left(0;\dfrac{1}{2}\right)\)

Phương trình đường thẳng AC: \(y=0\)

Phương trình đường thẳng CH: \(x+2y-1=0\)

C có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}y=0\\x+2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\Rightarrow H\left(1;0\right)\)

 

a: \(\overrightarrow{AB}=\left(-4;2\right)\)

\(\overrightarrow{BC}=\left(6;-3\right)\)

Vì \(\overrightarrow{BA}\cdot\overrightarrow{BC}=\overrightarrow{0}\) nên ΔABC vuông tại B

3 tháng 6 2023

Đối xứng của A qua trục tung là A'(4; -1) và đối xứng của A qua trục hoành là A"(-4; 1).

Vậy đỉnh thứ hai của tam giác cân là I(-4; -1).

Ta có thể tính được hệ số góc của đường thẳng AI bằng công thức:

\(m=\dfrac{y_A-y_I}{x_A-x_I}=\dfrac{1-\left(-1\right)}{4-\left(-4\right)}=\dfrac{1}{4}\)

Vậy phương trình đường thẳng AI là:

\(y-y_A=m\left(x-x_A\right)\)

\(y-1=\dfrac{1}{4}\left(x-4\right)\)

\(4y-4=x-4\)

\(x-4y=0\)

Vậy phương trình đường thẳng cần tìm là \(x-4y=0\)

3 tháng 6 2023

Đường thẳng đi qua A và tạo với hai trục tọa độ một tam giác cân đỉnh là gốc tọa độ sẽ qua điểm trung điểm của đoạn thẳng BC, ký hiệu là M.

Có:

Tọa độ x của trung điểm M = \(\dfrac{x_B+x_C}{2}=\dfrac{3+1}{2}=2\)

Tọa độ y của trung điểm M = \(\dfrac{y_B+y_C}{2}=\dfrac{2+6}{2}=4\) 

Vậy tọa độ của điểm M là (2, 4).

Phương trình đường thẳng đi qua A và M là:

\(y-1=\dfrac{4-1}{2-4}.\left(x-4\right)\Rightarrow y=-1,5x+7\)y

Vậy phương trình đường thẳng cần tìm là \(y=-1,5x+7.\)

(Cái câu kia mình làm cho bài khác tính cop màn hình mà bấm gửi nhầm ở đây, bài giải này mới đúng nhé!)