Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC. Các đường cao BH và CK cắt nhau tại E. Qua B kẻ Bx vuông góc với AB. Qua C kẻ Cy vuông góc với AC. Hai đường thẳng Bx và Cy cắt nhau tại D. Chứng minh tứ giác BDCE là hình bình hành - Toán học Lớp 8 - Bài tập Toán học Lớp 8 - Giải bài tập Toán học Lớp 8 | Lazi.vn - Cộng đồng Tri thức & Giáo dục
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
a/ Tứ giác ABCD có:
- AM=MD (gt)
- MB=MC (gt)
=> Tứ giác ABCD là hình bình hành
Do △ABC là tam giác cân suy ra AM vừa là trung tuyến vừa là đường cao hay AM⊥BC
=> ABCD là hình thoi (đpcm)
b/ Hình thoi ABCD (cmt) có AC//BD => CF//BD => AF//BD (1)
Mặt khác ta có: AD⊥BC ; BF⊥BC => AD//BF (2)
AF và BD cùng cắt AD và BF (3)
Từ (1), (2), (3):
Vậy tứ giác ADBF là hình bình hành (đpcm)
a) Xét tứ giác ABDC có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo AD(A và D đối xứng với nhau qua M)
Do đó: ABDC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành ABDC có AB=AC(ΔABC cân tại A)
nên ABDC là hình thoi(Dấu hiệu nhận biết hình thoi)
a: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
a) Xét tứ giác ABCD có M là trung điểm AC và M cũng là trung điểm BD nên ABCD là hình bình hành (dhnb)
b) Tứ giác ABCD là hình bình hành nên BA // CD và BA = CD.
Vậy nên AN cũng song song và bằng CD. Suy ra ANDC là hình bình hành.
Lại có \(\widehat{NAC}=90^o\) nên ANDC là hình chữ nhật.
c) Ta chứng minh bổ đề:
Cho tam giác ABC có M là trung điểm cạnh AB. Đường thẳng đi qua M song song với cạnh BC và cắt cạnh AC tại điểm N. Chứng minh NA = NC.
Chứng minh:
Từ M vẽ tia song song với AC, cắt BC tại F. Tứ giác MNCF có hai cạnh MN và FC song song nhau nên là hình thang. Hình thang MNCF có hai cạnh bên song song nhau nên hai cạnh bên đó bằng nhau (theo tính chất hình thang). Vậy nên MF = NC (1)
Xét hai tam giác BMF và MAN, có: \(\widehat{MBF}=\widehat{AMN}\) (hai góc đồng vị), BM = AM, \(\widehat{BMF}=\widehat{MAN}\) (hai góc đồng vị).
\(\Rightarrow\Delta BMF=\Delta MAN\left(g-c-g\right)\Rightarrow MF=AN\left(2\right)\)
Từ (1) và (2) suy ra NA = NC. Bổ đề được chứng minh.
Áp dụng bổ đề vào các tam giác AKC và BNI ta có: KI = IC; KI = BK
Vậy nên KC = 2BK.
d) Xét tam giác EBA và MNA có:
\(\widehat{EBA}=\widehat{MNA}\) (Hai góc so le trong)
AB chung
\(\widehat{BAE}=\widehat{NAM}\left(=90^o\right)\)
\(\Rightarrow\Delta EBA=\Delta MNA\) (Cạnh góc vuông - góc nhọn kề)
\(\Rightarrow EB=MN\)
Vậy thì tứ giác EBMN là hình bình hành. Lại có \(EM\perp BN\) nên EBMN là hình thoi.
Để EBMN là hình vuông thì BN = EM hay AB = AM.
Do AC = 2AM nên tam giác ABC phải thỏa mãn: AC = 2AB thì EBMN là hình vuông.