Cho: a + b = 5, a.b = -2
Tính: a^3 - b^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A^2+B^2=\left(A+B\right)^2-2AB=5\)
\(A^3+B^3=\left(A+B\right)^3-3AB\left(A+B\right)=9\)
\(A^5+B^5=\left(A^2+B^2\right)\left(A^3+B^3\right)-\left(AB\right)^2\left(A+B\right)=5.9-2^2.3=...\)
B.
\(A^2+B^2=\left(A+B\right)^2-2AB=2\)
\(A^6+B^6=\left(A^2\right)^3+\left(B^2\right)^3=\left(A^2+B^2\right)^3-3\left(AB\right)^2\left(A^2+B^2\right)=2^3-3.1^2.2=...\)
Ta có: \(A^2+B^2=\left(A+B\right)^2-2AB=3^2-2.2=5\)
\(A^5+B^5=\left(A^3+B^3\right)\left(A^2+B^2\right)-A^2B^2\left(A+B\right)=\left(A+B\right)\left(A^2-AB+B^2\right)\left(A^2+B^2\right)-A^2B^2\left(A+B\right)=3\left(5-2\right).5-2^2.3=33\)
Bài 2:
C=A-B
\(=2x^2-6xy+4y^2+5x^2-4xy-7y^2\)
\(=7x^2-10xy-3y^2\)
\(=7\cdot1^2-10\cdot1\cdot\dfrac{1}{2}-3\cdot\dfrac{1}{4}=7-5-\dfrac{3}{4}=2-\dfrac{3}{4}=\dfrac{5}{4}\)
** Bạn lưu ý lần sau viết đề bằng công thức toán để được hỗ trợ tốt hơn.
Lời giải:
$\frac{a+b}{c}+\frac{a+c}{b}+\frac{b+c}{a}=-2$
$\Leftrightarrow \frac{a+b}{c}+1+\frac{a+c}{b}+1+\frac{b+c}{a}=0$
$\Leftrightarrow (a+b+c)(\frac{1}{c}+\frac{1}{b})+\frac{b+c}{a}=0$
$\Leftrightarrow \frac{(a+b+c)(b+c)}{bc}+\frac{b+c}{a}=0$
$\Leftrightarrow (b+c)(\frac{a+b+c}{bc}+\frac{1}{a})=0$
$\Leftrightarrow (b+c).\frac{a(a+b+c)+bc}{abc}=0$
$\Leftrightarrow \frac{(b+c)(a+b)(a+c)}{abc}=0$
$\Rightarrow (a+b)(b+c)(c+a)=0$
$\Rightarrow a+b=0$ hoặc $b+c=0$ hoặc $c+a=0$
Không mất tổng quát giả sử $a+b=0\Rightarrow a=-b$
$1=a^3+b^3+c^3=(-b)^3+b^3+c^3=c^3\Rightarrow c=1$
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{-1}{b}+\frac{1}{b}+\frac{1}{1}=1$
Vậy..........
Vì a=b=c nên:
A=ab^2c.(-1/2bc^2)+(3/2abc).(-bc)^2
A=a^4.(-1/2a^3)+(3/2a^3).a^4
A=a^4.(-1/2a^3+3/2abc)
A=a^4.a^3=a^7
Thay a=1 vào A ta có: A=(-1)^7=-1
Ta có: \(A=ab^2c\cdot\left(-\dfrac{1}{2}bc^2\right)+\dfrac{3}{2}abc\cdot\left(-bc\right)^2\)
\(=\dfrac{-1}{2}ab^3c^3+\dfrac{3}{2}abc\cdot b^2c^2\)
\(=\dfrac{-1}{2}ab^3c^3+\dfrac{3}{2}ab^3c^3\)
\(=ab^3c^3\)
Thay a=-1; b=-1; c=-1 vào A, ta được:
\(A=-1\cdot\left(-1\right)^3\cdot\left(-1\right)^3=-1\)
a)\(a+b=-5\)
\(\Rightarrow\left(a+b\right)^2=25\)
\(\Leftrightarrow a^2+2ab+b^2=25\)
\(\Leftrightarrow a^2+12+b^2=25\)
\(\Leftrightarrow a^2+b^2=13\)
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=-5\left(13-6\right)=-35\)
Ta có a + b = 5 ;
=> (a + b)2 = 25
=> a2 + 2ab + b2 = 25
=> a2 + b2 = 19
Lại có (a - b)2 = a2 - 2ab + b2 = 19 - 6 = 13
=> (a - b)2 = 13
=> a - b = \(\pm\sqrt{13}\)
\(a+b=5\)
=> \(\left(a+b\right)^2=25\)
=> \(a^2+2ab+b^2=25\)
=> \(a^2+b^2+6=25\)
=> \(a^2+b^2=19\)
Ta có : \(\left(a-b\right)^2=a^2-2ab+b^2=19-6=13\)
=> \(a-b=\pm\sqrt{13}\)
2:
a: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{24}{9}=\dfrac{8}{3}\)
=>x=16/3; y=8; z=32/3
A=3x+2y-6z
=3*16/3+2*8-6*32/3
=16+16-64
=-32
b: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{x-y+z}{5-6+7}=\dfrac{6\sqrt{2}}{6}=\sqrt{2}\)
=>x=5căn 2; y=6căn 2; y=7căn 2
B=xy-yz
=y(x-z)
=6căn 2(5căn 2-7căn 2)
=-6căn 2*2căn 2
=-24
a) Ta có: \(a^3+b^3\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)\)
Thay \(ab=40\) và \(a+b=-6\) vào biểu thức ta có
\(\left(-6\right)^3-3\cdot7\cdot\left(-6\right)=-90\)
b) Ta có: \(a^3-b^3\)
\(=\left(a-b\right)^3+3ab\left(a-b\right)\)
Thay \(ab=40\) và \(a-b=3\) vào biểu thức ta có:
\(3^3+3\cdot40\cdot3=387\)
a: a^3+b^3=(a+b)^3-3ab(a+b)
=(-6)^3-3*7*(-6)
=-90
b: a^3-b^3=(a-b)^3+3ab(a-b)
=3^3+3*40*3
=387