help me
Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x2 )2005
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A\left(x\right)=\left(3-4+x^2\right)^{2004}\left(3+4x+x^2\right)^{2005}\)
Đa thức `A(x)` sau khi bỏ dấu ngoặc:
\(A\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\)
Với `n = 2 . 2004 + 2 . 2005 = 8018`
Ta thay `x = 1` thì \(A\left(1\right)=a_n+a_{n-1}+...+a_1+a_0\)
`=> A(1)` là tổng các hệ số của `A(x)` khi bỏ dấu ngoặc
Ta có: \(A\left(1\right)=\left(3-4.1+1^2\right)^{2004}\left(3+4.1+1^2\right)^{2005}\)
\(=0^{2004}.8^{2005}=0\)
Vậy tổng các hệ số của đa thức `A(x)` nhận được sau khi bỏ dấu ngoặc là `0`
Bài khó đến lớp 8 như mình còn ko bít làm thì ai làm hộ bạn đc
Tổng các hệ số của đa thức \(A\left(x\right)\) bất kì bằng giá trị của đa thức đó tại \(x=1\).
Thay \(x=1\) vào đa thức \(A\left(x\right)\) ta có:
\(A\left(1\right)=\left(3-4+1\right)^{2004}.\left(3+4+1\right)^{2005}=0\)
Bài 6:
Tổng các hệ số của đa thức A(x) khi khai triển sẽ bằng với giá trị của A(x) khi x=1
=>Tổng các hệ số khi khai triển là:
\(A\left(1\right)=\left(3-4+1\right)^{2004}\cdot\left(3+1+1\right)^{2005}=0\)
- Tổng các hệ số của 1 đa thức A(x) bất kì bằng giá trị của đa thức đó tại x = 1. Vậy tổng các hệ số của đa thức :
A(x)=A(1)=(3−4.1+12)2004(3+4.1+12)2005A(x)=A(1)=(3−4.1+12)2004(3+4.1+12)2005
=0.(3+4.1+12)2005=0=0.(3+4.1+12)2005=0
Vậy tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc là 0 .
Cái này bạn phải nhớ công thức tổng quát như thế này nè:
Tổng các hệ số của một đa thức P(x) bất kỳ bằng giá trị của đa thức đó tại x=1.
Vật tổng các hệ số của đa thức đó là:
\(A\left(x\right)=\left(3-4\cdot1+1^2\right)^{2004}\cdot\left(3+4\cdot1+1^2\right)^{2005}\)
\(\Rightarrow A\left(x\right)=0\)
Vậy tổng các hệ số của A(x) bằng 0.