tìm x,y,z t/m (x-y)^2014+|x|+|y|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-2014}=a\left(a\ge0\right)\\\sqrt{y^2-2014}=b\left(b\ge0\right)\\\sqrt{z^2-2014}=c\left(c\ge0\right)\end{matrix}\right.\)
\(\Rightarrow ab+bc+ca=2014\)
Ta có: \(\sqrt{x^2-2014}=a\)
\(\Leftrightarrow x^2-2014=a^2\)
\(\Rightarrow x^2=a^2+2014=a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)
Tương tự, ta có:
\(y^2=\left(b+c\right)\left(b+a\right)\)
\(z^2=\left(c+a\right)\left(c+b\right)\)
Xét \(A=xyz\left(\dfrac{\sqrt{x^2-2014}}{x^2}+\dfrac{\sqrt{y^2-2014}}{y^2}+\dfrac{\sqrt{z^2-2014}}{z^2}\right)\)
\(=\sqrt{\left(a+b\right)\left(a+c\right)}\times\sqrt{\left(b+c\right)\left(b+c\right)}\times\sqrt{\left(c+a\right)\left(c+b\right)}\)
\(\times\left[\dfrac{a}{\left(a+b\right)\left(a+c\right)}+\dfrac{b}{\left(b+c\right)\left(b+a\right)}+\dfrac{c}{\left(c+a\right)\left(c+b\right)}\right]\)
\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\times\dfrac{a\left(b+c\right)\times b\left(c+a\right)\times c\left(b+a\right)}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)
\(=2\left(ab+bc+ac\right)=4028\)
đk của x,y,z là x,y,z\(\ge\sqrt{2014}\) nhé, xin lỗi chép sót đề
giải được bài xyz thôi, bài xy làm sơ thấy lằng nhằng quá nên thôi, làm sau nhá
x2 + y2 + z2 = xy + yz + xz
<=> 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2 xz = 0
<=> (x - y)2 + (y - z)2 + (x - z)2 = 0
<=> x = y = z (1)
x2014 + y2014 + z2014 = 32015 (2)
thay (1) vào (2) được
x2014 + x2014 + x2014 = 32015
<=> 3x2014 = 32015
<=> x2014 = 32014
<=> \(\left[\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
mà x = y = z
=> \(\left[\begin{matrix}x=y=z=3\\x=y=z=-3\end{matrix}\right.\)
8h trôi qua như vậy quá muộn rồi!!..
\(x^2=y^2+2y+13\) (1) \(\Leftrightarrow x^2=\left(y+1\right)^2+12\Leftrightarrow x^2-z^2=12\)
Hệ nghiệm nguyên(*) \(\left\{\begin{matrix}x-z=a\\x+z=b\end{matrix}\right.\) với x>0; z>1;a,b thuộc Z và a.b=12
Bạn có thể giải tất cả => tìm ra nghiêm
Lập luận giảm bớt hệ vô nghiệm trước
Từ (*) công lại ta có: \(2x=\left(a+b\right)\Rightarrow x=\frac{a+b}{2}\)
x nguyên =>vậy a+b phải chẵn, x>0 =>cặp (2,6) duy nhất
\(x=\frac{2+6}{2}=4\) \(\Rightarrow z=2\Rightarrow y=1\)
Kết luận: Nghiệm(1) là: (x,y)=(4,1)
\(T\ge\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}+\frac{y^2}{\sqrt{2\left(x^2+z^2\right)}}+\frac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)
Đặt \(\left(\sqrt{y^2+z^2};\sqrt{x^2+z^2};\sqrt{x^2+y^2}\right)=\left(a;b;c\right)\Rightarrow a+b=c=2014\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=\frac{b^2+c^2-a^2}{2}\\y^2=\frac{a^2+c^2-b^2}{2}\\z^2=\frac{a^2+b^2-c^2}{2}\end{matrix}\right.\)
\(\Rightarrow T.2\sqrt{2}\ge\frac{b^2+c^2-a^2}{a}+\frac{a^2+c^2-b^2}{b}+\frac{a^2+b^2-c^2}{c}\)
\(T.2\sqrt{2}\ge\frac{\left(b+c\right)^2}{2a}+\frac{\left(a+c\right)^2}{2b}+\frac{\left(a+b\right)^2}{2c}-\left(a+b+c\right)\)
\(T.2\sqrt{2}\ge\frac{4\left(a+b+c\right)^2}{2\left(a+b+c\right)}-\left(a+b+c\right)=a+b+c=2014\)
\(\Rightarrow T\ge\frac{1007}{\sqrt{2}}\)
Dấu "=" xảy ra khi \(x=y=z=...\)
Ta có 2014 chia 7 dư 5, 7y chia hết cho 7
\(\Rightarrow x^4:7\) dư 5
Lại có : x chia 7 có thể dư \(0,\text{±1,±2,±3 }\)
\(\Rightarrow x^4\) chia 7 có thể dư 0,1,16,81 tức 0,1,2,4
\(\Rightarrow\) không tồn tại \(x^4\) chia 7 dư 5
Ta có :
\(\left(x-\dfrac{1}{5}\right)^{2014}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)
Mà \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{5}\right)^{2014}\ge0\\\left(y+0,4\right)^{100}\ge0\\\left(z-3\right)^{678}\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x-\dfrac{1}{5}\right)^{2014}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}\ge0\)
Lại có : \(\left(x-\dfrac{1}{5}\right)^{2014}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-\dfrac{1}{5}\right)^{2014}=0\\\left(y+0,4\right)^{100}=0\\\left(z-3\right)^{678}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{5}=0\\y+0,4=0\\z-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-0,4\\z=3\end{matrix}\right.\)
Vậy ,,,
Lời giải:
\(\frac{x+y}{y+z}=\frac{y+z}{z+t}=\frac{z+t}{t+x}=\frac{t+x}{x+y}\)
\(\Rightarrow (\frac{x+y}{y+z})^4=(\frac{y+z}{z+t})^4=(\frac{z+t}{t+x})^4=(\frac{t+x}{x+y})^4=\frac{x+y}{y+z}.\frac{y+z}{z+t}.\frac{z+t}{t+x}.\frac{t+x}{x+y}=1\)
\(\Rightarrow \left[\begin{matrix} \frac{x+y}{y+z}=\frac{y+z}{z+t}=\frac{z+t}{t+x}=\frac{t+x}{x+y}=1\\ \frac{x+y}{y+z}=\frac{y+z}{z+t}=\frac{z+t}{t+x}=\frac{t+x}{x+y}=-1\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=y=z=t\\ x+y+z+t=0\end{matrix}\right.\)
Nếu $x=y=z=t$ thì:
\(A=\left(\frac{y+z}{x+t}\right)^{2013}+\left(\frac{y+t}{x+y}\right)^{2014}=\left(\frac{x+x}{x+x}\right)^{2013}+\left(\frac{x+x}{x+x}\right)^{2014}=1+1=2\in\mathbb{Z}\)
Nếu $x+y+z+t=0$ thì:
\(y+z=-(x+t); y+t=-(x+y)\)
\(\Rightarrow A=(-1)^{2013}+(-1)^{2014}=(-1)+1=0\in\mathbb{Z}\)
Vậy biểu thức $A$ luôn có giá trị nguyên.