Cho biểu thức A = (6x+1)2 – (6x+1)(6x-1)
a) Rút gọn biểu thức A.
b) Tính giá trị biểu thức A tại x = -5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)` Thay `x=2` vào `B` có: `B=[-10]/[2-4]=5`
`b)` Với `x ne -1;x ne -5` có:
`A=[(x+2)(x+1)-5x-1-(x+5)]/[(x+1)(x+5)]`
`A=[x^2+x+2x+2-5x-1-x-5]/[(x+1)(x+5)]`
`A=[x^2-3x-4]/[(x+1)(x+5)]`
`A=[(x+1)(x-4)]/[(x+1)(x+5)]`
`A=[x-4]/[x+5]`
`c)` Với `x ne -5; x ne -1; x ne 4` có:
`P=A.B=[x-4]/[x+5].[-10]/[x-4]`
`=[-10]/[x+5]`
Để `P` nguyên `<=>[-10]/[x+5] in ZZ`
`=>x+5 in Ư_{-10}`
Mà `Ư_{-10}={+-1;+-2;+-5;+-10}`
`=>x={-4;-6;-3;-7;0;-10;5;-15}` (t/m đk)
\(a,\dfrac{x^2+6x+9}{x+3}\\ đk:x\ne-3\\ =\dfrac{\left(x+3\right)^2}{x+3}=x+3\)
b, Thay \(x=-2\left(t/mđk\right)\) vào
\(-2+3=1\)
Vậy tại \(x=-2\) thì biểu thức = 1
\(A=\dfrac{x^2+6x+9}{x+3}\)
\(A=\dfrac{x^2+2.x.3+3^2}{x+3}\)
\(A=\dfrac{\left(x+3\right)^2}{x+3}\)
\(A=x+3\)
b) Thay x = -2 vào A ta được A = -2 + 3 = 1
Vậy khi x = -2 thì A = 1
\(1,ĐK:x\ne0;x\ne\pm6\)
\(A=\left[\frac{6x+1}{x\left(x-6\right)}+\frac{6x-1}{x\left(x+6\right)}\right].\frac{\left(x+6\right)\left(x-6\right)}{12\left(x^2+1\right)}\)
\(=\frac{6x^2+36x+x+6+6x^2-36x-x+6}{x}.\frac{1}{12\left(x^2+1\right)}\)
\(=\frac{12\left(x^2+1\right)}{x}.\frac{1}{12\left(x^2+1\right)}=\frac{1}{x}\)
\(2,A=\frac{1}{x}=\frac{1}{\frac{1}{\sqrt{9+4\sqrt{5}}}}=\sqrt{9+4\sqrt{5}}\)
Cho tam giác ABC vuông tại B có góc B1=B2 ; Â=60o, kẻ BH vuông góc với AC (H thuộc AC). Qua B kẻ đường thẳng d song song với AC.
a) Tính góc ABH.
b) Chứng minh đường thẳng d vuông góc với BH.
26:
A=12x^2+10x-6x-5-(12x^2-8x+3x-2)
=12x^2+4x-5-12x^2+5x+2
=9x-3
Khi x=-2 thì A=-18-3=-21
25:
b: \(\left(y-3\right)\left(y^2+y+1\right)-y\left(y^2-2\right)\)
=y^3+y^2+y-3y^2-3y-3-y^3+2y
=-2y^2-3
a) -ĐKXĐ của A:
x+3≠0 ⇔x≠-3.
x2-9≠0 ⇔(x-3)(x+3)≠0 ⇔x-3≠0 hay x+3≠0⇔x≠3 hay x≠-3.
x-3≠0 ⇔x≠3.
b) B=x2+5x+6=x2+2x+3x+6=x(x+2)+3(x+2)=(x+2)(x+3)
c) A=\(\dfrac{x}{x+3}-\dfrac{6x}{x^2-9}+\dfrac{2}{x-3}\)=\(\dfrac{x\left(x-3\right)+2\left(x+3\right)-6x}{\left(x+3\right)\left(x-3\right)}\)=\(\dfrac{x^2-3x+2x+6-6x}{\left(x+3\right)\left(x-3\right)}\)=\(\dfrac{x^2-7x+6}{x^2-9}\)
d)- Vì x=37 thỏa mãn ĐKXĐ của A và A=\(\dfrac{x^2-7x+6}{x^2-9}\)nên:
A=\(\dfrac{37^2-7.37+6}{37^2-9}=\dfrac{279}{340}\)
\(A=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}\)
\(A=\sqrt{x^2-6x+3^2}-\sqrt{x^2+6x+3^2}\)
\(A=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}\)
b)\(\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}=1\)
\(TH1:x-3>=0\)
\(< =>x+3>=0\)
\(\left|x-3\right|-\left|x+3\right|=1\)
\(x-3-x-3=1\)
\(-6=1\)(loại)
\(TH2:x-3< =0\)
\(x+3>=0\)
\(< =>\left|x-3\right|-\left|x+3\right|=1\)
\(3-x-x-3\)
\(-2x=1\)
\(x=-\frac{1}{2}\left(TM\right)\)
\(TH3:x-3< =0\)
\(x+3< =0\)
\(< =>\left|x-3\right|-\left|x+3\right|=1\)
\(3-x+X+3=1\)
\(6=1\)(loại)
\(< =>x=\left\{\frac{1}{2}\right\}\)để \(A=1\)
Bài làm:
a) Tại x = 2 thì giá trị của B là:
\(B=-\frac{10}{2-4}=\frac{-10}{-2}=5\)
b) Ta có:
\(A=\frac{x+2}{x+5}+\frac{-5x-1}{x^2+6x+5}-\frac{1}{1+x}\)
\(A=\frac{x+2}{x+5}-\frac{5x+1}{\left(x+1\right)\left(x+5\right)}-\frac{1}{x+1}\)
\(A=\frac{\left(x+2\right)\left(x+1\right)-5x-1-\left(x+5\right)}{\left(x+1\right)\left(x+5\right)}\)
\(A=\frac{x^2+3x+2-5x-1-x-5}{\left(x+1\right)\left(x+5\right)}\)
\(A=\frac{x^2-3x-4}{\left(x+1\right)\left(x+5\right)}\)
\(A=\frac{\left(x+1\right)\left(x-4\right)}{\left(x+1\right)\left(x+5\right)}\)
\(A=\frac{x-4}{x+5}\)
c) Ta có: \(P=A.B=\frac{x-4}{x+5}\cdot\frac{-10}{x-4}=\frac{-10}{x+5}\)
Để \(-\frac{10}{x+5}\inℤ\Rightarrow\left(x+5\right)\inƯ\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
=> \(x\in\left\{-15;-10;-7;-6;-4;-3;0;5\right\}\)
a) \(B=\frac{-10}{x-4}\)( ĐKXĐ : \(x\ne4\))
Tại x = 2 ( tmđk ) thì \(B=\frac{-10}{2-4}=\frac{-10}{-2}=5\)
b) \(A=\frac{x+2}{x+5}+\frac{-5x-1}{x^2+6x+5}-\frac{1}{1+x}\)
ĐKXĐ : \(x\ne-5,x\ne-1\)
\(A=\frac{x+2}{x+5}-\frac{5x+1}{\left(x+1\right)\left(x+5\right)}-\frac{1}{x+1}\)
\(A=\frac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x+5\right)}-\frac{5x+1}{\left(x+1\right)\left(x+5\right)}-\frac{1\left(x+5\right)}{\left(x+1\right)\left(x+5\right)}\)
\(A=\frac{x^2+3x+2-5x-1-x-5}{\left(x+1\right)\left(x+5\right)}\)
\(A=\frac{x^2-3x-4}{\left(x+1\right)\left(x+5\right)}\)
\(A=\frac{\left(x+1\right)\left(x-4\right)}{\left(x+1\right)\left(x+5\right)}=\frac{x-4}{x+5}\)
c) \(P=A\cdot B=\frac{x-4}{x+5}\cdot\frac{-10}{x-4}=\frac{-10}{x+5}\)( ĐKXĐ : \(x\ne-5\))
Để P nguyên => \(\frac{-10}{x+5}\)nguyên
=> -10 chia hết cho x + 5
=> x + 5 thuộc Ư(-10) = { ±1 ; ±2 ; ±5 ; ±10 }
x+5 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
x | -4 | -6 | -3 | -7 | 0 | -10 | 5 | -15 |
Các giá trị của x đều tmđk
Vậy x = { -4 ; -6 ; -3 ; -7 ; 0 ; -10 ; 5 ; -15 }
a: \(A=36x^2+12x+1-36x^2+1=12x+2\)