K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2021

a: \(A=36x^2+12x+1-36x^2+1=12x+2\)

6 tháng 5 2023

`a)` Thay `x=2` vào `B` có: `B=[-10]/[2-4]=5`

`b)` Với `x ne -1;x ne -5` có:

`A=[(x+2)(x+1)-5x-1-(x+5)]/[(x+1)(x+5)]`

`A=[x^2+x+2x+2-5x-1-x-5]/[(x+1)(x+5)]`

`A=[x^2-3x-4]/[(x+1)(x+5)]`

`A=[(x+1)(x-4)]/[(x+1)(x+5)]`

`A=[x-4]/[x+5]`

`c)` Với `x ne -5; x ne -1; x ne 4` có:

`P=A.B=[x-4]/[x+5].[-10]/[x-4]`

           `=[-10]/[x+5]`

Để `P` nguyên `<=>[-10]/[x+5] in ZZ`

    `=>x+5 in Ư_{-10}`

Mà `Ư_{-10}={+-1;+-2;+-5;+-10}`

`=>x={-4;-6;-3;-7;0;-10;5;-15}` (t/m đk)

5 tháng 1 2023

\(a,\dfrac{x^2+6x+9}{x+3}\\ đk:x\ne-3\\ =\dfrac{\left(x+3\right)^2}{x+3}=x+3\)

b, Thay \(x=-2\left(t/mđk\right)\) vào 

\(-2+3=1\)

Vậy tại \(x=-2\) thì biểu thức = 1 

5 tháng 1 2023

\(A=\dfrac{x^2+6x+9}{x+3}\)

\(A=\dfrac{x^2+2.x.3+3^2}{x+3}\)

\(A=\dfrac{\left(x+3\right)^2}{x+3}\)

\(A=x+3\)

b) Thay x = -2 vào A ta được A = -2 + 3 = 1

Vậy khi x = -2 thì A = 1

\(1,ĐK:x\ne0;x\ne\pm6\)

\(A=\left[\frac{6x+1}{x\left(x-6\right)}+\frac{6x-1}{x\left(x+6\right)}\right].\frac{\left(x+6\right)\left(x-6\right)}{12\left(x^2+1\right)}\)

\(=\frac{6x^2+36x+x+6+6x^2-36x-x+6}{x}.\frac{1}{12\left(x^2+1\right)}\)

\(=\frac{12\left(x^2+1\right)}{x}.\frac{1}{12\left(x^2+1\right)}=\frac{1}{x}\)

\(2,A=\frac{1}{x}=\frac{1}{\frac{1}{\sqrt{9+4\sqrt{5}}}}=\sqrt{9+4\sqrt{5}}\)

12 tháng 2 2020

Cho tam giác ABC vuông tại B có góc B1=B; Â=60o, kẻ BH vuông góc với AC (H thuộc AC). Qua B kẻ đường thẳng d song song với AC.

a) Tính góc ABH.

b) Chứng minh đường thẳng d vuông góc với BH.

26:

A=12x^2+10x-6x-5-(12x^2-8x+3x-2)

=12x^2+4x-5-12x^2+5x+2

=9x-3

Khi x=-2 thì A=-18-3=-21

25:

b: \(\left(y-3\right)\left(y^2+y+1\right)-y\left(y^2-2\right)\)

=y^3+y^2+y-3y^2-3y-3-y^3+2y

=-2y^2-3

19 tháng 1 2022

a) -ĐKXĐ của A:

x+3≠0 ⇔x≠-3.

x2-9≠0 ⇔(x-3)(x+3)≠0 ⇔x-3≠0 hay x+3≠0⇔x≠3 hay x≠-3.

x-3≠0 ⇔x≠3.

b) B=x2+5x+6=x2+2x+3x+6=x(x+2)+3(x+2)=(x+2)(x+3)

c) A=\(\dfrac{x}{x+3}-\dfrac{6x}{x^2-9}+\dfrac{2}{x-3}\)=\(\dfrac{x\left(x-3\right)+2\left(x+3\right)-6x}{\left(x+3\right)\left(x-3\right)}\)=\(\dfrac{x^2-3x+2x+6-6x}{\left(x+3\right)\left(x-3\right)}\)=\(\dfrac{x^2-7x+6}{x^2-9}\)

d)- Vì x=37 thỏa mãn ĐKXĐ của A và A=\(\dfrac{x^2-7x+6}{x^2-9}\)nên:

A=\(\dfrac{37^2-7.37+6}{37^2-9}=\dfrac{279}{340}\)

29 tháng 5 2021

\(A=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}\)

\(A=\sqrt{x^2-6x+3^2}-\sqrt{x^2+6x+3^2}\)

\(A=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}\)

b)\(\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}=1\)

\(TH1:x-3>=0\)

\(< =>x+3>=0\)

\(\left|x-3\right|-\left|x+3\right|=1\)

\(x-3-x-3=1\)

\(-6=1\)(loại)

\(TH2:x-3< =0\)

\(x+3>=0\)

\(< =>\left|x-3\right|-\left|x+3\right|=1\)

\(3-x-x-3\)

\(-2x=1\)

\(x=-\frac{1}{2}\left(TM\right)\)

\(TH3:x-3< =0\)

\(x+3< =0\)

\(< =>\left|x-3\right|-\left|x+3\right|=1\)

\(3-x+X+3=1\)

\(6=1\)(loại)

\(< =>x=\left\{\frac{1}{2}\right\}\)để \(A=1\)

27 tháng 8 2020

Bài làm:

a) Tại x = 2 thì giá trị của B là:

\(B=-\frac{10}{2-4}=\frac{-10}{-2}=5\)

b) Ta có:

\(A=\frac{x+2}{x+5}+\frac{-5x-1}{x^2+6x+5}-\frac{1}{1+x}\)

\(A=\frac{x+2}{x+5}-\frac{5x+1}{\left(x+1\right)\left(x+5\right)}-\frac{1}{x+1}\)

\(A=\frac{\left(x+2\right)\left(x+1\right)-5x-1-\left(x+5\right)}{\left(x+1\right)\left(x+5\right)}\)

\(A=\frac{x^2+3x+2-5x-1-x-5}{\left(x+1\right)\left(x+5\right)}\)

\(A=\frac{x^2-3x-4}{\left(x+1\right)\left(x+5\right)}\)

\(A=\frac{\left(x+1\right)\left(x-4\right)}{\left(x+1\right)\left(x+5\right)}\)

\(A=\frac{x-4}{x+5}\)

c) Ta có: \(P=A.B=\frac{x-4}{x+5}\cdot\frac{-10}{x-4}=\frac{-10}{x+5}\)

Để \(-\frac{10}{x+5}\inℤ\Rightarrow\left(x+5\right)\inƯ\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

=> \(x\in\left\{-15;-10;-7;-6;-4;-3;0;5\right\}\)

27 tháng 8 2020

a) \(B=\frac{-10}{x-4}\)( ĐKXĐ : \(x\ne4\))

Tại x = 2 ( tmđk ) thì \(B=\frac{-10}{2-4}=\frac{-10}{-2}=5\)

b) \(A=\frac{x+2}{x+5}+\frac{-5x-1}{x^2+6x+5}-\frac{1}{1+x}\)

ĐKXĐ : \(x\ne-5,x\ne-1\)

\(A=\frac{x+2}{x+5}-\frac{5x+1}{\left(x+1\right)\left(x+5\right)}-\frac{1}{x+1}\)

\(A=\frac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x+5\right)}-\frac{5x+1}{\left(x+1\right)\left(x+5\right)}-\frac{1\left(x+5\right)}{\left(x+1\right)\left(x+5\right)}\)

\(A=\frac{x^2+3x+2-5x-1-x-5}{\left(x+1\right)\left(x+5\right)}\)

\(A=\frac{x^2-3x-4}{\left(x+1\right)\left(x+5\right)}\)

\(A=\frac{\left(x+1\right)\left(x-4\right)}{\left(x+1\right)\left(x+5\right)}=\frac{x-4}{x+5}\)

c) \(P=A\cdot B=\frac{x-4}{x+5}\cdot\frac{-10}{x-4}=\frac{-10}{x+5}\)( ĐKXĐ : \(x\ne-5\))

Để P nguyên => \(\frac{-10}{x+5}\)nguyên

=> -10 chia hết cho x + 5

=> x + 5 thuộc Ư(-10) = { ±1 ; ±2 ; ±5 ; ±10 }

x+51-12-25-510-10
x-4-6-3-70-105-15

Các giá trị của x đều tmđk

Vậy x = { -4 ; -6 ; -3 ; -7 ; 0 ; -10 ; 5 ; -15 }