2-1/3|2x+1|=0,5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(0,5-2x\right)\dfrac{3}{2}=-3\)
\(\Rightarrow\left(\dfrac{1}{2}-2x\right)\dfrac{3}{2}=-3\)
\(\Rightarrow\left(\dfrac{1}{2}-2x\right)=-3.\dfrac{2}{3}\)
\(\Rightarrow\dfrac{1}{2}-2x=-2\)
\(\Rightarrow2x=\dfrac{1}{2}+2\)
\(\Rightarrow2x=\dfrac{5}{2}\)
\(\Rightarrow x=\dfrac{5}{2}.\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{5}{4}\)
3, TH1 : 2x + 1 \(\ge\)0 <=> x \(\ge\)\(\frac{-1}{2}\)
| 2x + 1 | = 2x + 1 (*)
thay (*) vào biểu thức ta có :
x2 + 2x + 1 = 0
<=> ( x + 1 )2 = 0
<=> x + 1 = 0
<=> x = -1
\(a,0,1^{2-x}>0,1^{4+2x}\\ \Leftrightarrow2-x>2x+4\\ \Leftrightarrow3x< -2\\ \Leftrightarrow x< -\dfrac{2}{3}\)
\(b,2\cdot5^{2x+1}\le3\\ \Leftrightarrow5^{2x+1}\le\dfrac{3}{2}\\ \Leftrightarrow2x+1\le log_5\left(\dfrac{3}{2}\right)\\ \Leftrightarrow2x\le log_5\left(\dfrac{3}{2}\right)-1\\ \Leftrightarrow x\le\dfrac{1}{2}log_5\left(\dfrac{3}{2}\right)-\dfrac{1}{2}\\ \Leftrightarrow x\le log_5\left(\dfrac{\sqrt{30}}{10}\right)\)
c, ĐK: \(x>-7\)
\(log_3\left(x+7\right)\ge-1\\ \Leftrightarrow x+7\ge\dfrac{1}{3}\\ \Leftrightarrow x\ge-\dfrac{20}{3}\)
Kết hợp với ĐKXĐ, ta có:\(x\ge-\dfrac{20}{3}\)
d, ĐK: \(x>\dfrac{1}{2}\)
\(log_{0,5}\left(x+7\right)\ge log_{0,5}\left(2x-1\right)\\ \Leftrightarrow x+7\le2x-1\\ \Leftrightarrow x\ge8\)
Kết hợp với ĐKXĐ, ta được: \(x\ge8\)
Bài 1:\(\left|2x-1\right|=2x-1\) khi \(x>0\)
b)\(\left|0,5-3x\right|=3x-0.5\) khi x= 4
c)\(\left|5x+1\right|-10x=0,5\) khi x= 0,1
Bài 2:Min A=0
Min B=-2
Bài 1:
a, \(\left|2x-1\right|=2x-1\)
+) Xét \(x\ge\dfrac{1}{2}\) ta có:
\(2x-1=2x-1\)
\(\Rightarrow x\) tùy ý với \(x\ge\dfrac{1}{2}\)
+) Xét \(x< \dfrac{1}{2}\) ta có:
\(1-2x=2x-1\)
\(\Rightarrow4x=2\)
\(\Rightarrow x=\dfrac{1}{2}\) ( không t/m )
Vậy...
b, \(\left|0,5-3x\right|=3x-0,5\)
+) Xét \(x\ge\dfrac{1}{6}\) ta có:
\(0,5-3x=3x-0,5\)
\(\Rightarrow6x=1\)
\(\Rightarrow x=\dfrac{1}{6}\) ( t/m )
+) Xét \(x< \dfrac{1}{6}\) ta có:
\(3x-0,5=3x-0,5\)
\(\Rightarrow x\) tùy ý với \(x< \dfrac{1}{6}\)
Vậy \(x\le\dfrac{1}{6}\)
c, \(\left|5x+1\right|-10x=0,5\)
+) Xét \(x\ge\dfrac{-1}{5}\) ta có:
\(5x+1-10x=0,5\)
\(\Rightarrow-5x=-0,5\)
\(\Rightarrow x=\dfrac{1}{10}\) ( t/m )
+) Xét \(x< \dfrac{-1}{5}\) ta có:
\(-5x-1-10x=0,5\)
\(\Rightarrow-15x=1,5\)
\(\Rightarrow x=\dfrac{-1}{10}\) ( không t/m )
Vậy \(x=\dfrac{1}{10}\)
Bài 2:
a, Ta có: \(-\left|x-3,5\right|\le0\)
\(\Rightarrow A=0,5-\left|x-3,5\right|\le3,5\)
Dấu " = " xảy ra khi \(-\left|x-3,5\right|=0\Rightarrow x=3,5\)
Vậy \(MIN_A=0,5\) khi x = 3,5
b, Ta có: \(-\left|1,4-x\right|\le0\)
\(\Rightarrow B=-\left|1,4-x\right|-2\le-2\)
Dấu " = " xảy ra khi \(-\left|1,4-x\right|=0\Rightarrow x=1,4\)
Vậy \(MIN_B=-2\) khi \(x=1,4\)
Ta có : (2x + 1)4 = (2x + 1)6
=> (2x + 1)4 - (2x + 1)6 = 0
<=> (2x + 1)4[1 - (2x + 1)2] = 0
\(\Leftrightarrow\orbr{\begin{cases}\left(2x+1\right)^4=0\\1-\left(2x+1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\\left(2x+1\right)^2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=-1\\\left(2x+1\right)=1;-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\2x=0;-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=0;-1\end{cases}}\)
Vậy x thuộc \(-\frac{1}{2};0;-1\)
trả lời giúp em
1/3.|2x+1|=1.5
|2x+1|=4.5
-->2x+1=4.5 hoặc 2x+1=-4.5
-->x=1.75 hoặc x=-2.75