K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : 

x/x^2 + x + 1 = -2/3

<=> -2x^2 - 2x - 2 = 3x

<=> -2x^2 - 5x - 2 = 0 

<=> -2(x^2 + 5/2x + 1) = 0 

<=> x^2 + 5/2x + 1 = 0

<=> x^2 + 2x.5/4 + 25/16 - 9/16 = 0 

<=> (x+5/4)^2 = 9/16

<=> x + 5/4 = 3/4 hoặc x + 5/4 = -3/4

<=> x = -1/2 hoặc x = -2

Sau đấy thay vào ( easy )

Ta có : 

x/x^2 + x + 1 = -2/3

<=> -2x^2 - 2x - 2 = 3x

<=> -2x^2 - 5x - 2 = 0 

<=> -2(x^2 + 5/2x + 1) = 0 

<=> x^2 + 5/2x + 1 = 0

<=> x^2 + 2x.5/4 + 25/16 - 9/16 = 0 

<=> (x+5/4)^2 = 9/16

<=> x + 5/4 = 3/4 hoặc x + 5/4 = -3/4

<=> x = -1/2 hoặc x = -2

Sau đấy thay vào ( easy )

`#3107.101107`

`D = x^3 - y^3 - 3xy` biết `x - y - 1 = 0`

Ta có:

`x - y - 1 = 0`

`=> x - y = 1`

`D = x^3 - y^3 - 3xy`

`= (x - y)(x^2 + xy + y^2) - 3xy`

`= 1 * (x^2 + xy + y^2) - 3xy`

`= x^2+ xy + y^2 - 3xy`

`= x^2 - 2xy + y^2`

`= x^2 - 2*x*y + y^2`

`= (x - y)^2`

`= 1^2 = 1`

Vậy, với `x - y = 1` thì `D = 1`

________

`E = x^3 + y^3` với `x + y = 5; x^2 + y^2 = 17`

`x + y = 5`

`=> (x + y)^2 = 25`

`=> x^2 + 2xy + y^2 = 25`

`=> 2xy = 25 - (x^2 + y^2)`

`=> 2xy = 25 - 17`

`=> 2xy = 8`

`=> xy = 4`

Ta có:

`E = x^3 + y^3`

`= (x + y)(x^2 - xy + y^2)`

`= 5 * [ (x^2 + y^2) - xy]`

`= 5 * (17 - 4)`

`= 5 * 13`

`= 65`

Vậy, với `x + y = 5; x^2 + y^2 = 17` thì `E = 65`

________

`F = x^3 - y^3` với `x - y = 4; x^2 + y^2 = 26`

Ta có:

`x - y = 4`

`=> (x - y)^2 = 16`

`=> x^2 - 2xy + y^2 = 16`

`=> (x^2 + y^2) - 2xy = 16`

`=> 2xy = (x^2 + y^2) - 16`

`=> 2xy = 26 - 16`

`=> 2xy = 10`

`=> xy = 5`

Ta có:

`F = x^3 - y^3`

`= (x - y)(x^2 + xy + y^2)`

`= 4 * [ (x^2 + y^2) + xy]`

`= 4 * (26 + 5)`

`= 4*31`

`= 124`

Vậy, với `x - y = 4; x^2 + y^2 = 26` thì `F = 124.`

DD
24 tháng 7 2021

Đa thức \(P\left(x\right)=x^3-3x+1\)có ba nghiệm phân biệt \(x_1,x_2,x_3\) có: 

\(\hept{\begin{cases}x_1+x_2+x_3=0\\x_1x_2+x_2x_3+x_3x_1=-3\\x_1x_2x_3=-1\end{cases}}\)

\(E=Q\left(x_1\right)Q\left(x_2\right)Q\left(x_3\right)=\left(x_1^2-1\right)\left(x_2^2-1\right)\left(x_3^2-1\right)\)

\(=\left(x_1x_2x_3\right)^2-\left(x_1^2x_2^2+x_2^2x_3^2+x_3^2x_1^2\right)+\left(x_1^2+x_2^2+x_3^2\right)-1\)

\(=\left(x_1x_2x_3\right)^2-\left[\left(x_1x_2+x_2x_3+x_3x_1\right)^2-2x_1x_2x_3\left(x_1+x_2+x_3\right)\right]+\left[\left(x_1+x_2+x_3\right)^2-2\left(x_1x_2+x_2x_3+x_3x_1\right)\right]-1\)

\(=\left(-1\right)^2-3^2+2.3-1=-3\)

5 tháng 5 2017

a) A = -1;                        b) B = ( x   +   y ) 3  =1.

1 tháng 6 2019

a) Rút gọn P = x 4 y ; thay x = 10 và y = − 1 10  và biểu thức ta được P = 10 4 . − 1 10 = − 10 3 .  

b) Nhận xét: Ta thấy biểu thức Q không thể rút gọn và việc thay trực tiếp x = 31 vào biểu thức khiến tính toán phức tạp. Với x = 31 thì 30 = 31 – 1 = x – 1.

Do đó Q =  x 3   –   ( x   –   1 ) x 2   –   x 2   +   1

Rút gọn Q = 1.

23 tháng 6 2019

6 tháng 12 2020

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Leftrightarrow2+\frac{x+4}{2000}+\frac{x+3}{2001}=2+\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Leftrightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2001}+1\right)\)

\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

Mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)

Suy ra x+2004=0

\(\Leftrightarrow x=-2004\)

10 tháng 9 2021

\(a,=x+x^2-x^3+x^4-x^5+1+x-x^2+x^3-x^4-x-x^2+x^3-x^4+x^5+1+x-x^2+x^3-x^4\\ =2x-2x^2+2x^3-2x^4\)