K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2021

Áp dụng ĐL Pi ta go trong

tam giác vuông OAP có: AP2 = OA2 - OP2

Trong tam giác vuông OAN có: AN2 = OA2 - ON2

Tương tự, với các tam giác vuông OBP; OBM; OCM; OCN 

Ta có: AN2 + BP2 + CM2 = (OA2 - ON2) + (OB2 - OP2) + (OC- OM2)  = (OA2 + OB+ OC2) - (ON2 + OP2 + OM2

AP+ BM+ CN= (OA- OP2) + (OB- OM2) + (OC2 - ON2) = (OA2 + OB+ OC2) - (ON2 + OP2 + OM2

=>  AN2 + BP2 + CM2  = AP+ BM+ CN2

24 tháng 10 2021

Có lẽ đây không phải toán lớp 7 đâu nha

1 tháng 11 2021

1 PHẦN 8 , ĐÂY LÀ CÂU CUỐI TRONG MỘT BÀI THI CHUYÊN TOÁN CỰC KHÓ CỦA MỸ

https://www.youtube.com/watch?v=OkmNXy7er84&ab_channel=3Blue1Brown ĐÂY LÀ LINK NẾU MỌI NGI CÓ Ý ĐỊNH TÌM HIÊU CÁI NÀY

28 tháng 7 2019

A B C O X Y Z W

Dựng hình bình hành OZWY. Ta có YW = OZ = AB và ^WYO = 1800 - ^YOZ = ^BAC

Xét \(\Delta\)ABC và \(\Delta\)YWO: AB = OZ, AC = YO, ^BAC = ^WYO => \(\Delta\)ABC = \(\Delta\)YWO (c.g.c)

Suy ra ^ACB = ^YOW (2 góc tương ứng). Vì ^ACB + ^XOY = 1800 nên ^YOW + ^XOY = 1800

Suy ra X,O,W thẳng hàng. Theo tính chất hình bình hành thì WO chia đôi YZ

Do đó XO cũng chia đôi YZ. Chứng minh tương tự YO chia đôi ZX, ZO chia đôi XY

Vậy thì O là trọng tâm của tam giác XYZ (đpcm).

* Bài toán tổng quát: Cho tam giác ABC. Một điểm O bất kì nằm trong tam giác. Trên đường thẳng qua O vuông góc BC,CA,AB lần lượt lấy các điểm X,Y,Z sao cho \(\frac{OX}{BC}=\frac{OY}{CA}=\frac{OZ}{AB}=k\). Khi đó O là trọng tâm của tam giác XYZ.

Phép chứng minh cũng tương tự như bài toán vừa rồi.

28 tháng 7 2019

Cảm ơn nhé

19 tháng 9 2018

Đổi k ko minasan

14 tháng 10 2021

\(\overrightarrow{BM}+\overrightarrow{CN}+\overrightarrow{AP}\)

\(=\dfrac{1}{2}\left(\overrightarrow{BC}+\overrightarrow{CA}+\overrightarrow{AP}\right)\)

\(=\overrightarrow{0}\)