Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H K I
a, tg ABC cân tại A (gt) => ^ABC = ^ACB (tc)
xét tg HCB và tg KBC có : BC chung
^CHB = ^BKC = 90
=> tg ABC = tg KBC (ch-gn)
=> CH = BK (đn)
=> CH/AB = BK/AB mà AB = AC do tam giác ABC cân tại A (Gt)
=> CH/AC = BK/AB
=> HK // BC (đl)
b, sửa đề thành HC.AC = BC.IC
xét tg CHB và tg CIA có : ^ACB chung
^CHB = ^AIC = 90
=> tg CHB đồng dạng với tg AIC (g-g)
=> HC/BC = IC/AC (đn) => HC.AC = BC.IC
c, tg ABC cân tại A (Gt) mà AI là đường cao (gt)
=> AI đồng thời là đtt (đl) => IB = IC = 1/2 BC
mà có : HC.AC = BC.IC (Câu b) ; BC = a; AC = b
=> HC.b = a.a/2 => BC = a^2/2b
Có AH = AC - HC
=> AH = b - a^2/2b = (2b^2 - a^2)/2b
mà HK // BC (câu a) nên
AH/AC = HK/BC => HK = AH.BC/AC = a/b.(2b^2 - a^2)/2b
=> HK = (2ab^2 - a^3)/2b^2 = a - a^3/2b^2
a) Xét tam giác BCK và tam giác CBH có:
góc BKC = góc CHB = 90 độ
BC: chung
góc KBC = góc HCB ( vì tam giác ABC cân tại A)
=> Tam giác BCK = tam giác CBH ( cạnh huyền-góc nhọn)
=> CK=BH (đpcm)
b) Theo câu a) tam giác BCK = tam giác CHB
=> góc KCB = góc HBC
=> tam giác IBC cân tại I
=> IB = IC
Xét tam giác AIB và tam giác AIC có:
AI: chung
AB=AC ( vì tam giác ABC cân tại A)
IB=IC (cmt)
=> tam giác AIB = tam giác AIC ( c.c.c)
=> góc BAI = góc CAI
=> AI là tia phân giác của góc A
c) Vì tam giác ABC cân tại A nên góc ABC = góc AC = \(\frac{180^0-\widehat{A}}{2}\)
Theo câu a) tam giác BCK = tam giác CBH
=> BK=CH
Mà AB=AC
=> AB-BK=AC-CH
=> AK=AH
=> tam giác AKH cân tại A
=> góc AKH = góc AHK = \(\frac{180^0-\widehat{A}}{2}\)
Do đó: góc ABC = góc AKH
Mà đây là 2 góc đồng vị nên BC//HK
a) Xét ΔBKC vuông tại K và ΔCHB vuông tại H có
BC chung
\(\widehat{KBC}=\widehat{HCB}\)(ΔABC cân tại A)
Do đó: ΔBKC=ΔCHB(cạnh huyền-góc nhọn)
Suy ra: BK=CH(hai cạnh tương ứng)
b) Xét ΔAIC vuông tại I và ΔBHC vuông tại H có
\(\widehat{BCH}\) chung
Do đó: ΔAIC\(\sim\)ΔBHC(g-g)
Suy ra: \(\dfrac{CA}{CB}=\dfrac{CI}{CH}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(CA\cdot CH=CB\cdot CI\)(đpcm)
a) Xét ΔABH và ΔACK có:
\(\widehat{AHB}=\widehat{AKC}=90\)
AB=AC (gt)
\(\widehat{A}\) : góc chung
=>ΔABH=ΔACK(cạnh huyền-góc nhọn)
=>BH=CK (hai cạnh tương ứng)
Xét ΔABC có: BH,CK là hai đường cao của ΔABC
=>H là trực tâm
=>AI là đường cao của ΔABC
Mà ΔABC cân tại A(gt)
=>AI cũng là tia phân giác của \(\widehat{A}\)
c) Vì ΔABH=ΔAKC(cmt)
=>AH=AK
=>ΔAHK cân tại A
=>\(\widehat{AKH}=\frac{180-\widehat{A}}{2}\) (1)
Vì ΔABC cân tại A(gt)
=>\(\widehat{ABC}=\frac{180-\widehat{A}}{2}\) (2)
Từ (1)(2) suy ra:
HK//BC (Vì hai góc này ở vị trí đồng vị)
a) Xét 2 tam giác vuông: \(\Delta KBC\) và \(\Delta HCB\)
\(\widehat{KBC}=\widehat{HCB}\)
\(BC\) chung
suy ra: \(\Delta KBC=\Delta HCB\)(ch_gn)
\(\Rightarrow\)\(BK=CH\)
b) \(AB=AC\) VÀ \(BK=CH\)
\(\Rightarrow\)\(\frac{BK}{AB}=\frac{HC}{AC}\)
\(\Rightarrow\) \(KH//BC\) (theo định lý Ta-lét đảo)