cho tam giác ABC vuông ở A,qua C kẻ đường thẳng d vuông góc với AC . lấy điểm D trên đường thẳng d sao cho CD=AB và điểm D nằm khác phía điểm B đối với AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm của đg thẳng vuông góc với AD cắt AD tại T
Xét tam giác ANC vuông tại C và tam giác ANT vuông tại T có
AN^2=AT^2 + TN^2 (Đlí Py-ta-go)
AN^2=CN^2 + AC^2
=> AT^2+TN^2=CN^2+AC^2 (1)
Xét tam giác TND vuông tại T, tam giác KDT vuông tại T, tam giác ATK vuông tại T, tam giác ABK vuông tại B có
ND^2=TD^2+TN^2
KD^2=TD^2+TK^2
AK^2=AT^2+TK^2
AK^2=AB^2+BK^2
=>(1) <=> AC^2 + NC^2-NT^2 =AT^2
Mà NC=ND( Vì N là trung điểm của CD ) ;AB=AC (GT)
=> AC^2+NC^2-NT^2=AT^2 <=> AC^2 + ND^2 - NT^2 = AT^2
<=> AC^2 + (ND^2 - NT^2)= AT^2
<=>AB^2 + TD^2 = AT^2
<=> AB^2+(KD^2 - KT^2) = AT^2
<=> AB^2 + KD^2 - KT^2 =AT^2
<=> KD^2 - ( KT^2 + AT^2)= -(AB)^2
<=> KD^2 - AK^2 = -(AB)^2
<=> KD^2 = AK^2 - AB^2
<=> KD^2 = BK^2
<=> KD = KB
Vậy KB = KD
Gọi giao điểm của dường thẳng vuông góc với AD cắt AD tại T
Xét tam giác ANC vuông tại C và tam giác ANT vuông tại T , ta có :
\(AN^2=AT^2+TN^2\)( định lí Py-ta-go )
\(AN^2=CN^2+AC^2\)
\(\Rightarrow AT^2+TN^2=CN^2+AC^2\left(1\right)\)
Xét tam giác TND vuông tại T , KDT vuông tại T , ATK vuông tại T , ABK vuông tại B : Ta có :
\(ND^2=TD^2+TN^2\)
\(KD^2=TD^2+TK^2\)
\(AK^2=AT^2+TK^2\)
\(AK^2=AB^2+BK^2\)
\(\Rightarrow\left(1\right)\Leftrightarrow AC^2+NC^2-NT^2=AT^2\)
Mà NC = ND ( Vì N là trung điểm của CD )
AB = AC(gt)
\(\Rightarrow AC^2+NC^2-NT^2=AT^2\Leftrightarrow AC^2+ND^2-NT^2=AT^2\)
\(\Leftrightarrow AC^2+\left(ND^2-NT^2\right)=AT^2\)
\(\Leftrightarrow AB^2+TD^2=AT^2\)
\(\Leftrightarrow AB^2+\left(KD^2-KT^2\right)=AT^2\)
\(\Leftrightarrow AB^2+KD^2-KT^2=AT^2\)
Bạn tự làm tiếp nhé~
a: Ta có: AC⊥AB
d⊥AB
Do đó: AC//d
b: Xét ΔACB vuông tại A và ΔBDA vuông tại B có
AB chung
AC=BD
Do đó: ΔACB=ΔBDA
c: Xét tứ giác ACBD có
AC//BD
AC=BD
Do đó: ACBD là hình bình hành
Suy ra: Hai đường chéo CD và AB cắt nhau tại trung điểm của mỗi đường