phân tích (x+1)(x+3)(x+5)(x+7) -9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =4(x-2)(x+1)+4(x-2)^2+(x+1)^2
=(2x-4)^2+2*(2x-4)(x+1)+(x+1)^2
=(2x-4+x+1)^2=(3x-3)^2=9(x-1)^2
b: =x^7(x^2-1)-x^5(x+1)+x^3(x+1)+(x^2-1)
=(x+1)[x^7(x-1)-x^5+x^3+x-1]
=(x+1)[x^7(x-1)-x^3(x-1)(x+1)+(x-1)]
=(x+1)(x-1)(x^7-x^4-x^3+1)
=(x+1)(x-1)(x^3-1)(x^4-1)
=(x+1)(x-1)^2*(x^2+x+1)(x^2+1)(x-1)(x+1)
=(x+1)^2*(x-1)^3*(x^2+1)(x^2+x+1)
M = x9 - x7 + x6 - x5 - x4 + x3 - x2 + 1
= ( x9 - x7 ) + ( x6 - x4 ) - ( x5 - x3 ) - ( x2 - 1 )
= x7( x2 - 1 ) + x4( x2 - 1 ) - x3( x2 - 1 ) - ( x2 - 1 )
= ( x2 - 1 )( x7 + x4 - x3 - 1 )
= ( x - 1 )( x + 1 )[ x4( x3 + 1 ) - ( x3 + 1 ) ]
= ( x - 1 )( x + 1 )( x3 + 1 )( x4 - 1 )
= ( x - 1 )( x + 1 )( x + 1 )( x2 - x + 1 )( x2 - 1 )( x2 + 1 )
= ( x + 1 )2( x - 1 )( x2 - x + 1 )( x - 1 )( x + 1 )( x2 + 1 )
= ( x + 1 )3( x - 1 )2( x2 + 1 )( x2 - x + 1 )
Ta có:
\(x^9-x^7-x^6-x^5+x^4+x^3+x^2-1\)
\(=\left(x^9-x^8\right)+\left(x^8-x^7\right)-\left(x^6-x^5\right)-\left(2x^5-2x^4\right)-\left(x^4-x^3\right)+\left(x^2-x\right)+\left(x-1\right) \)
\(=x^8.\left(x-1\right)+x^7.\left(x-1\right)-x^5.\left(x-1\right)-2x^4.\left(x-1\right)-x^3\left(x-1\right)+x\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(x^8+x^7-x^5-2x^4-x^3+x+1\right)\)
Dùng hằng đẳng thức mình chỉ nhắc thế thôi mệt lắm ko muốn làm
a)\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)-9\)
\(=\text{[}\left(x+1\right)\left(x+7\right)\text{]}.\text{[}\left(x+3\right)\left(x+5\right)\text{]}-9\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)-9\)
Đặt \(x^2+8x+11=y\)\(\Rightarrow Bi\text{ểu}th\text{ứ}c:\left(y-4\right)\left(y+4\right)-9\)
\(=y^2-16-9\)
\(=y^2-25\)
\(=\left(y+5\right)\left(y-5\right)\)
Thay \(y=x^2+8x+11\)vào biểu thức ta đc:
\(\left(x^2+8x+16\right)\left(x^2+8x+6\right)\)\(=\left(x+4\right)^2\left(x^2+8x+6\right)\)
\(x^{16}+x^8+1\)
\(=x^{16}+2x^8+1-x^8\)
\(=\left(x^8+1\right)^2-x^8\)
\(=\left(x^8-x^4+1\right)\left(x^8+x^4+1\right)\)
\(=\left(x^8-x^4+1\right)\left(x^8+2x^4+1-x^4\right)\)
\(=\left(x^8-x^4+1\right)\left[\left(x^4+1\right)^2-x^4\right]\)
\(=\left(x^8-x^4+1\right)\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)
\(=\left(x^8-x^4+1\right)\left(x^4-x^2+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)