K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2021

Đặt x = 0

=> 2x + 15 = 16 (tm)

=> y = 4 

=> x = 0 chọn

x > 0

=> \(\orbr{\begin{cases}x=2k+1\\x=2k\end{cases}}\left(k\inℕ^∗\right)\)

Khi x = 2k

=> 2x + 15 = 22k + 15 = 4k + 15

nhận tháy 4k \(⋮\)4 còn 15 : 4 dư 3 => loại vị số chính phương chia 4 không dư 3

Khi x = 2k + 1

=> 2x + 15 = 22k + 1 = 4k.2 + 15

nhận tháy 4k .2\(⋮\)4 còn 15 : 4 dư 3 => loại vị số chính phương chia 4 không dư 3

Vậy x = 0 ; y = 4 là giá trị cần tìm 

DD
23 tháng 2 2021

\(x,y\)nguyên dương suy ra \(2^x+15\)là số lẻ suy ra \(y\)là số lẻ. 

Đặt \(y=2n+1\left(n\inℕ\right)\)

\(2^x+14=\left(2n+1\right)^2-1\)

\(\Leftrightarrow2^x+14=4n^2+4n\)

\(VP⋮4\Rightarrow VT⋮4\Rightarrow x=1\)(vì nếu \(x\ge2\)thì \(2^x⋮4,14⋮̸4\Rightarrow2^x+14⋮̸4\)

Suy ra \(y^2=17\)không có nghiệm nguyên. 

Vậy phương trình không có nghiệm nguyên dương. 

13 tháng 1 2019

Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:

\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)

Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)

Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)

13 tháng 1 2019

Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)

\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)

Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)

Vậy (x;y) = (3;3)

18 tháng 8 2020

a) \(xy+3x+y=8\)

\(\Leftrightarrow\left(xy+3x\right)+\left(y+3\right)=11\)

\(\Leftrightarrow x\left(y+3\right)+\left(y+3\right)=11\)

\(\Leftrightarrow\left(x+1\right)\left(y+3\right)=11=1.11=\left(-1\right).\left(-11\right)\)

Ta xét các TH sau:

\(\hept{\begin{cases}x+1=1\\y+3=11\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=8\end{cases}}\)

\(\hept{\begin{cases}x+1=11\\y+3=1\end{cases}}\Rightarrow\hept{\begin{cases}x=10\\y=-2\end{cases}}\)

\(\hept{\begin{cases}x+1=-1\\y+3=-11\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=-14\end{cases}}\)

\(\hept{\begin{cases}x+1=-11\\y+3=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-12\\y=-4\end{cases}}\)

Vậy ta có 4 cặp số (x;y) thỏa mãn: (0;8) ; (10;-2) ; (-2;-14) ; (-12;-4)

18 tháng 8 2020

a. xy + 3x + y = 8

=> x ( y + 3 ) + ( y + 3 ) = 8 + 3 = 11

=> ( x + 1 ) ( y + 3 ) = 11

 x + 1 y + 3 x y
 11 1 10 - 2
 1  11 0 8
 - 11 - 1 - 12 - 4
 - 1 - 11 - 2 - 14

Vậy các cặp ( x ; y ) thỏa mãn đề bài là ( 10 ; - 2 ) ; ( 0 ; 8 ) ; ( - 12 ; - 4 ) ; ( - 2 ; - 14 )

b. Không rõ đề

12 tháng 1 2017

Sô nguyên am lon nhat la -1

Suy ra x-15=-1

            X.    =-1+15

            X=14

So nguyen duong nho nhat la so 1

Suy ra :y+10=1

             Y=1-10

              Y=-9

12 tháng 1 2017

a/ Ta có: Số nguyên âm lớn nhất là -1.

 Vậy x -15 = -1

        x       = -1+15

=>    x       = 14
 

b/ Ta có: Số nguyên dương bé nhất là 1.

Vậy x+10 =1

       x      =1-10

=>   x      =-9./

25 tháng 7 2023

\(x^2+y^2+2\left(x+y\right)-xy=0\)

\(\Leftrightarrow4x^2-4xy+4y^2+8\left(x+y\right)=0\)

\(\Leftrightarrow\left(2x-y\right)^2+4\left(2x-y\right)+4+3y^2+12y+12=-16\)

\(\Leftrightarrow\left(2x-y+2\right)^2+3\left(y+2\right)^2=-16\)

Dễ thấy VT \(\ge0\) ; VP < 0 nên phương trình vô nghiệm 

24 tháng 7 2023

\(x^2+y^2-2\left(x+y\right)=xy\)

\(\Rightarrow x^2-2x+1+y^2-2y+1=2+xy\)

\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\)

Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2\ge2\left(x-1\right)\left(y-1\right)\) (Bất đẳng thức Cauchy)

7 tháng 12 2015

 

x>0; y >0

=> 2x +1 >/3

và 2y+1 >/3

=>(2y+1)(2x+1) =15 = 3.5  ( x;y có vai trò như nhau)

=> 2y +1 =3 => y =1

    2x +1 =5 => x = 2 

Vậy (x+1)(y+1) = (2+1)(1+1) = 3.2 =6

và (3y+1)(3x+1) = (3+1)(3.2+1) =4.7 =28