tìm các số nguyên dương x, y biết: 2x + 15 = y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)
Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)
Vậy (x;y) = (3;3)
a) \(xy+3x+y=8\)
\(\Leftrightarrow\left(xy+3x\right)+\left(y+3\right)=11\)
\(\Leftrightarrow x\left(y+3\right)+\left(y+3\right)=11\)
\(\Leftrightarrow\left(x+1\right)\left(y+3\right)=11=1.11=\left(-1\right).\left(-11\right)\)
Ta xét các TH sau:
+ \(\hept{\begin{cases}x+1=1\\y+3=11\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=8\end{cases}}\)
+ \(\hept{\begin{cases}x+1=11\\y+3=1\end{cases}}\Rightarrow\hept{\begin{cases}x=10\\y=-2\end{cases}}\)
+ \(\hept{\begin{cases}x+1=-1\\y+3=-11\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=-14\end{cases}}\)
+ \(\hept{\begin{cases}x+1=-11\\y+3=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-12\\y=-4\end{cases}}\)
Vậy ta có 4 cặp số (x;y) thỏa mãn: (0;8) ; (10;-2) ; (-2;-14) ; (-12;-4)
a. xy + 3x + y = 8
=> x ( y + 3 ) + ( y + 3 ) = 8 + 3 = 11
=> ( x + 1 ) ( y + 3 ) = 11
x + 1 | y + 3 | x | y |
11 | 1 | 10 | - 2 |
1 | 11 | 0 | 8 |
- 11 | - 1 | - 12 | - 4 |
- 1 | - 11 | - 2 | - 14 |
Vậy các cặp ( x ; y ) thỏa mãn đề bài là ( 10 ; - 2 ) ; ( 0 ; 8 ) ; ( - 12 ; - 4 ) ; ( - 2 ; - 14 )
b. Không rõ đề
Sô nguyên am lon nhat la -1
Suy ra x-15=-1
X. =-1+15
X=14
So nguyen duong nho nhat la so 1
Suy ra :y+10=1
Y=1-10
Y=-9
\(x^2+y^2+2\left(x+y\right)-xy=0\)
\(\Leftrightarrow4x^2-4xy+4y^2+8\left(x+y\right)=0\)
\(\Leftrightarrow\left(2x-y\right)^2+4\left(2x-y\right)+4+3y^2+12y+12=-16\)
\(\Leftrightarrow\left(2x-y+2\right)^2+3\left(y+2\right)^2=-16\)
Dễ thấy VT \(\ge0\) ; VP < 0 nên phương trình vô nghiệm
\(x^2+y^2-2\left(x+y\right)=xy\)
\(\Rightarrow x^2-2x+1+y^2-2y+1=2+xy\)
\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\)
Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2\ge2\left(x-1\right)\left(y-1\right)\) (Bất đẳng thức Cauchy)
x>0; y >0
=> 2x +1 >/3
và 2y+1 >/3
=>(2y+1)(2x+1) =15 = 3.5 ( x;y có vai trò như nhau)
=> 2y +1 =3 => y =1
2x +1 =5 => x = 2
Vậy (x+1)(y+1) = (2+1)(1+1) = 3.2 =6
và (3y+1)(3x+1) = (3+1)(3.2+1) =4.7 =28
Đặt x = 0
=> 2x + 15 = 16 (tm)
=> y = 4
=> x = 0 chọn
x > 0
=> \(\orbr{\begin{cases}x=2k+1\\x=2k\end{cases}}\left(k\inℕ^∗\right)\)
Khi x = 2k
=> 2x + 15 = 22k + 15 = 4k + 15
nhận tháy 4k \(⋮\)4 còn 15 : 4 dư 3 => loại vị số chính phương chia 4 không dư 3
Khi x = 2k + 1
=> 2x + 15 = 22k + 1 = 4k.2 + 15
nhận tháy 4k .2\(⋮\)4 còn 15 : 4 dư 3 => loại vị số chính phương chia 4 không dư 3
Vậy x = 0 ; y = 4 là giá trị cần tìm
\(x,y\)nguyên dương suy ra \(2^x+15\)là số lẻ suy ra \(y\)là số lẻ.
Đặt \(y=2n+1\left(n\inℕ\right)\).
\(2^x+14=\left(2n+1\right)^2-1\)
\(\Leftrightarrow2^x+14=4n^2+4n\)
\(VP⋮4\Rightarrow VT⋮4\Rightarrow x=1\)(vì nếu \(x\ge2\)thì \(2^x⋮4,14⋮̸4\Rightarrow2^x+14⋮̸4\))
Suy ra \(y^2=17\)không có nghiệm nguyên.
Vậy phương trình không có nghiệm nguyên dương.