K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2021

Ta có công thức \(\frac{1}{k\left(k+1\right)}=\frac{1}{k}-\frac{1}{k+1}\)(bạn tự lên mạng coi cách chứng minh nha)

Áp dụng vào bài suy ra \(\frac{1}{1.2}=1-\frac{1}{2};\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3};...;\frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)

Cộng theo vế ta được \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}< 1\)(đpcm)

11 tháng 5 2021

để A=5/n-1 là phân số thì n#1

để A=5/n-1 là số nguyên thì 5 chia hết cho n-1 

suy ra n-1 thuộc Ư(5)={1;-1;5;-5}

lập bảng ta có n={2;0;6;-4}

ta có ước của hai số nguyên liên tiếp bằng 1

suy ra Ư(n: n-1)=1 vậy n/n-1 là phân số tối giản

ta có 1/1x2+1/2x3+1/3x4+....+1/49/50

       =1/1-1/2+1/2-1/3+1/4-1/5 +......+1/49-1/50

       =1-1/50

       =49/50<1

vậy 1/1x2+1/2x3+1/3x4+.....+1/49x50<1

13 tháng 3 2016

MÌNH BIK LÀM CÂU A THUI, mình ko ghi lại đề nha

P=1/2.2/3.3/4........99/100

(Nhân tử với tử, mẫu nhân với mẫu ) ta có 

P=1.2.3.4.......99/2.3.4...........100

P=1/100

13 tháng 3 2016

\(P=\frac{1}{2}.\frac{2}{3}......\frac{99}{100}=\frac{1.2.3....99}{2.3.4....100}=\frac{1}{100}\)

\(Q=\frac{4}{1.3}.\frac{9}{2.4}.....\frac{9901}{99.100}=\frac{2^2}{1.3}.\frac{3^2}{2.4}.....\frac{99^2}{99.100}=\frac{2^2.3^2...99^2}{1.2.3^2....98^2.99.100}=\frac{2.99}{100}=\frac{99}{50}\)

2 tháng 10 2021

\(1\cdot2+2\cdot3+3\cdot4+...+n\left(n+1\right)\\ =\dfrac{1}{3}\left[1\cdot2\cdot3+2\cdot3\cdot3+...+3n\left(n+1\right)\right]\\ =\dfrac{1}{3}\left[1\cdot2\left(3-0\right)+2\cdot3\left(4-1\right)+...+n\left(n+1\right)\left(n+2-n+1\right)\right]\\ =\dfrac{1}{3}\left[1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-...-\left(n-1\right)n\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\right]\\ =\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)

2 tháng 10 2021

Thank you so much!

2 tháng 5 2015

Câu a: Không hỏi nên không trả lời

Câu b:Gọi d là ƯCLN của n và n+1

Ta có: n chia hết cho d

n+1 chia hết cho d

=>(n+1)-n chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy phân số n/n+1 là phân số tối giản

Câu c: \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

=\(1-\frac{1}{50}\)

Vì: \(1-\frac{1}{50}\)<\(1\)

Vậy:\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)<\(1\)

 

12 tháng 11 2019

2. Câu hỏi của lekhanhhung - Toán lớp 7 - Học toán với OnlineMath

15 tháng 5 2015

\(\frac{a}{n\left(n+a\right)}\)

=\(\frac{\left(n+a\right)-n}{n\left(n+a\right)}\)

=\(\frac{n+a}{n\left(n+a\right)}\)\(-\frac{n}{n\left(n+a\right)}\)

Rút gọn, ta được:

\(\frac{1}{n}\)\(-\frac{1}{n+a}\)

=>đpcm

 

A=\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

A=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

A=\(\frac{1}{2}-\frac{1}{100}\)

A=\(\frac{50}{100}-\frac{1}{100}\)

A=\(\frac{49}{100}\)

10 tháng 6 2018

a) Xét trên tử

Ta có :

1.5.6 + 2.10.12 + 4.20.24 + 9.45.54

= 1.5.6 + \(^{2^3}\). 1.5.6 + \(^{4^3}\).1.5.6 + \(^{9^3}\).1.5.6

= 1.5.6 ( 2^3 + 4^3 + 9^3 )

Xét mẫu

Ta có :

1.3.5 + 2.6.10 + 4.12.20 + 9.27.45

= 1.3.5 + 2^3 .1.3.5 + 4^3 . 1.3.5 + 9^3 .1.3.5

= 1.3.5 ( 2^3 + 4^3 + 9^3 )

Ta có 

A = \(\frac{1.5.6.\left(2^3+4^3+9^3\right)}{1.3.5.\left(2^3+4^3+9^3\right)}\)= 2

b) Ta có :

 k(k+1)(k+2)-(k-1)k(k+1) = k(k + 1) (k + 2 - k + 1 ) = k( k + 1 ) . 3 = 3k( k + 1 )

Ta có :

S = 1.2 + 2.3 + 3.4 + ... + n(n + 1 )

\(\Rightarrow\)3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + n(n + 1) . 3

3S = 1.2.3 + 2.3(4 - 1) + 3.4(5 - 2) + ... + n(n + 1)[(n + 2) - (n - 1)]

3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + 3.4.5 - 2.3.4 + ... + n(n + 1)(n + 2) - (n - 1)n(n + 1)

3S = n(n + 1)(n + 2)

S = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)