Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D = 1.2 + 2.3+ 3.4 +...+ 99.100
=>3D=1.2.3+2.3.3+3.4.3+...+99.100.3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)
=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
=99.100.101-0.1.2
=99.100.101
=999900
=>D=999900:3=333300
Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)
=>3Dn=1.2.3+2.3.3+3.4.3+...+n(n+1).3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]
=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-2.3.4+....+n(n+1)(n+2)-(n-1)n(n+1)
=n.(n+1).(n+2)-0.1.2
=n.(n+1)(n+2)
=>Dn=n.(n+1)(n+2):3
=>điều cần chứng minh
B= 1/1-1/2+1/2-1/3+1/3-1/4+....+1/99-1/100
B=1/1-1/100
B=99/100
K cho mk nha bn, mơn
a) không biết
b) B = 1.2 + 2.3 + 3.4 + ... + 99.100
3.B = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
= 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ... + 99.100.(101-98)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.100.101
= 99.100.101 = 999900
3.B = 999900
B = 333300
Câu a: Không hỏi nên không trả lời
Câu b:Gọi d là ƯCLN của n và n+1
Ta có: n chia hết cho d
n+1 chia hết cho d
=>(n+1)-n chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy phân số n/n+1 là phân số tối giản
Câu c: \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
=\(1-\frac{1}{50}\)
Vì: \(1-\frac{1}{50}\)<\(1\)
Vậy:\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)<\(1\)
a) Vì n.(n+1) = 1/n-1/n+1 suy ra n thuộc N n khác 0
b) A=1/1*2+1/2*3+1/3*4+...+1/9.10
A=1/1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10
A=1-1/10=9/10
Vậy A = 9/10
Lời giải:
$A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{n(n+1)}$
$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{(n+1)-n}{n(n+1)}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}$
$=1-\frac{1}{n+1}=\frac{n}{n+1}$
Ta có đpcm.
a) \(\frac{1}{n}-\frac{1}{n+a}=\frac{\left(n+a\right)-n}{n\left(n+a\right)}=\frac{a}{a\left(n+a\right)}\) (đpcm)
b) \(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
\(B=\frac{5}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)=\frac{5}{3}.\left(1-\frac{1}{103}\right)=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)
\(C=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}=\frac{1}{3}-\frac{1}{51}=\frac{16}{51}\)
tại sao câu đầu nhân với cái j chia với cái j vậy bạn vế đầu ý
Câu 1: n+1/n+2
Gỉa sử UCLN(n+1,n+2)=d
\(\hept{\begin{cases}n+1\\n+2\end{cases}}\)chia hết cho d =>n+2-(n+1) chia hết cho d
n+2-n-1 chia hết cho d
=>d=1
=>n+1/n+2 tối giảncác câu còn lại dễ cậu tự lm nha
\(\frac{a}{n\left(n+a\right)}\)
=\(\frac{\left(n+a\right)-n}{n\left(n+a\right)}\)
=\(\frac{n+a}{n\left(n+a\right)}\)\(-\frac{n}{n\left(n+a\right)}\)
Rút gọn, ta được:
\(\frac{1}{n}\)\(-\frac{1}{n+a}\)
=>đpcm
A=\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
A=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
A=\(\frac{1}{2}-\frac{1}{100}\)
A=\(\frac{50}{100}-\frac{1}{100}\)
A=\(\frac{49}{100}\)