K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2017

Chia đa thức cho đa thức,Xác định các hằng số a và b sao cho,x^4 + ax + b chia hết cho x^2 - 4,x^4 + ax^ + bx - 1 chia hết cho x^2 - 1,x^3 + ax + b chia hết cho x^2 + 2x - 2,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

Chỉ ý kiến của mk thôi

chưa chắc đúng

Tham khảo nhé

14 tháng 10 2020

x4 + ax + b\(⋮\)x2 - 4

<=> x4 + ax + b\(⋮\)( x - 2 ) ( x + 2 )

<=>\(\hept{\begin{cases}x^4+ax+b⋮x-2\\x^4+ax+b⋮x+2\end{cases}}\)

Đặt f ( x ) = x4 + ax + b

Theo định lý Bezout về phép chia đa thức, số dư của f ( x ) = x4 + ax + b cho x - 2 ; x + 2 lần lượt là f ( 2 ) ; f ( - 2 )

Để phép chia là chia hết thì\(\hept{\begin{cases}f\left(2\right)=16+2a+b=0\\f\left(-2\right)=-16-2a+b=0\end{cases}}\)

<=>\(\hept{\begin{cases}2a+b=-16\left(1\right)\\-2a+b=16\left(2\right)\end{cases}}\)

Lấy ( 1 ) - ( 2 ) ta được : 4a = 0 <=> a = 0

Thay a = 0 vào ( 1 ) ta được : 0 + b = - 16 <=> b = - 16

Vậy \(\hept{\begin{cases}a=0\\b=-16\end{cases}}\)

14 tháng 10 2020

bạn ơi định lý bezout là gì vậy

26 tháng 9 2016

a ) \(x^2-4=x^2-2^2=\left(x-2\right)\left(x+2\right)\)

\(f\left(x\right)=x^4+ax+b\)

Theo định lí bơ zu 

\(\Rightarrow f\left(2\right)=16+2b+b=0\)

\(\Leftrightarrow2a+b=-16\) ( 1 )

\(\Rightarrow f\left(-2\right)=16-2a+b=0\)

\(\Leftrightarrow-2a+b=-16\) ( 2 )

Từ ( 1 ) và ( 2 ) \(\Leftrightarrow a=0;b=-16\)

 

26 tháng 9 2016

định lí bơ zu :)))), @Võ Đông Anh Tuấn học lớp mấy mà học nó rồi z, mình học theo chương trình đi thi toán qua mạng :v

25 tháng 8 2021

Để x4 + ax2 + b chia hết cho x2 + x + 1 thì x4 + ax2 + b khi phân tích phải có nhân tử là x2 + x + 1

Sau khi phân tích thì x4 + ax2 + b có dạng ( x2 + x + 1 )( x2 + cx + d )

=> x4 + ax2 + b = ( x2 + x + 1 )( x2 + cx + d )

<=> x4 + ax2 + b = x4 + cx3 + dx2 + x3 + cx2 + dx + x2 + cx + d

<=> x4 + ax2 + b = x4 + ( c + 1 )x3 + ( c + d + 1 )x2 + ( c + d )x + d

Đồng nhất hệ số ta có : \(\hept{\begin{cases}c+1=0\\c+d+1=a\\c+d=0\end{cases}};d=b\Rightarrow\hept{\begin{cases}a=b=d=1\\c=-1\end{cases}}\)

Vậy a = b = 1

25 tháng 8 2021

x^4+ax^2+1
= x^4+2x^2+1+ax^2-2x^2
=(x^2+1)^2-x^2+x^2(a-1)
= (x^2+x+1)(x^2-x+1)+x^2(a-1)
= (x^2+x+1)(x^2-x+1)+(a-1)(x^2+x+1) -(a-1)(x-1). 
để x^4+ax^2+1 chia hết cho x^2+x+1 
thì số dư =0 
<=> (a-1)(x-1) =0 
<=> a=1

8 tháng 10 2015

Đây là phương pháp đồng nhất hạng tử (cách này hơi khó hiểu vì dành cho lớp chuyên toán hoặc đội tuyển)

sau khi lấy x4+ax+b chia cho x2-1 ta được x2+1 dư ax+b+1

ta có x4+ax+b = (x2-1)(x2+cx+d)

=>x4+ax+b=x4+cx3+dx2-x2-cx-d

Tương đương bậc của 2 bên ( ko cần ghi bậc chỉ cần ghi hệ số)

x=x=> 0

0x=cx3 => c=0

0x2=(d-1)x2  => d-1 = 0 ( lấy x2 chung)

ax=-cx => a=-c

b=-d

Từ những điều trên ta kết luận 

a=0 (a=-c mà c=0)

b=1 (b=-d mà d=1)