K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
8 tháng 12 2021

luôn tồn tại 1 trong 3 số bằng 1

thật vậy, giả sử không có số nào bằng 1

\(\Rightarrow\hept{\begin{cases}\frac{1}{x}\le\frac{1}{2}\\\frac{1}{y}\le\frac{1}{2}\\\frac{1}{z}\le\frac{1}{2}\end{cases}}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{3}{2}< 2\) mâu thuẫn với giả thiết

vậy phải có 1 số bằng 1

không mất tổng quát ta giả sử z = 1

nen ta có : \(\frac{1}{x}+\frac{1}{y}=1\Leftrightarrow x=\frac{y}{y-1}=1+\frac{1}{y-1}\)

do x nguyên nên y-1 =1 hay y =2 \(\Rightarrow x=2\)

vậy phương trình có nghiệm là ( 2,2,1) và các cặp giao hoán của nó ( là ( 1,2,2) và (2,1,2) ) 

4 tháng 4 2017

Câu 2/ 

\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}=1\)

Điều kiện \(\hept{\begin{cases}x^2\ne0\\x^2+y^2\ne0\\x^2+y^2+z^2\ne0\end{cases}}\)

Xét \(x^2,y^2,z^2\ge1\)

Ta có: \(\hept{\begin{cases}x^2\ge1\\x^2+y^2\ge2\end{cases}}\)

\(\Rightarrow x^2\left(x^2+y^2\right)\ge2\)

\(\Rightarrow\frac{1}{x^2\left(x^2+y^2\right)}\le\frac{1}{2}\left(1\right)\)

Tương tự ta có: \(\hept{\begin{cases}\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}\le\frac{1}{6}\left(2\right)\\\frac{1}{x^2\left(x^2+y^2+z^2\right)}\le\frac{1}{3}\left(3\right)\end{cases}}\)

Cộng (1), (2), (3) vế theo vế ta được

\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}\le\frac{1}{2}+\frac{1}{6}+\frac{1}{3}=1\)

Dấu = xảy ra  khi \(x^2=y^2=z^2=1\)

\(\Rightarrow\left(x,y,z\right)=?\)

Xét \(\hept{\begin{cases}x^2\ge1\\y^2=z^2=0\end{cases}}\) thì ta có

\(\frac{1}{x^4}+\frac{1}{x^4}+\frac{1}{x^4}=1\)

\(\Leftrightarrow x^4=3\left(l\right)\)

Tương tự cho 2 trường hợp còn lại: \(\hept{\begin{cases}x^2,y^2\ge1\\z^2=0\end{cases}}\) và \(\hept{\begin{cases}x^2,z^2\ge1\\y^2=0\end{cases}}\)

4 tháng 4 2017

Bài 2/

Ta có:  \(\frac{x}{y}+\frac{y}{z}+\frac{z}{t}+\frac{t}{x}\ge4\sqrt[4]{\frac{x}{y}.\frac{y}{z}.\frac{z}{t}.\frac{t}{x}}=4>3\)

Vậy phương trình không có nghiệm nguyên dương.

9 tháng 2 2017

Do vai trò của \(x,\)\(y,\)\(z\) là như nhau nên giả sử \(z\ge y\ge x\ge1.\)
Ta sẽ thử trực tiếp một vài trường hợp: 
     \(-\) Nếu \(x=1\) thì \(\frac{1}{y}+\frac{1}{z}=0\) ( vô nghiệm) 
     \(-\) Nếu \(x=2\) thì \(\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\) \(\Leftrightarrow\)\(2y+2z=yz\) \(\Leftrightarrow\)  \(\left(y-2\right)\left(z-2\right)=4\)
       Mà \(0\le y-2\le z-2\)\(4⋮\left(y-2\right),\) \(4⋮\left(z-2\right)\)
Do đó ta có các trường hợp: \(\hept{\begin{cases}y-2=1\rightarrow y=3\\z-2=4\rightarrow z=6\end{cases}}\)
                                           \(\hept{\begin{cases}y-2=2\rightarrow y=4\\z-2=2\rightarrow z=4\end{cases}}\)

     \(-\) Nếu \(x=3\) thì  \(\frac{1}{y}+\frac{1}{z}=\frac{2}{3}\)       + Nếu \(y=3\) thì \(z=3\)
                                                                              + Nều \(y\ge4\) thì \(\frac{1}{y}+\frac{1}{z}\le\frac{1}{4}+\frac{1}{4}=\frac{1}{2}< \frac{1}{3}\)
                                                                                \(\Rightarrow\) phương trình vô nghiệm 
     \(-\)Nếu \(x=4\) thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}< 1\)   \(\Rightarrow\) phương trình vô nghiệm 

         Vậy tóm lại phương trình đã cho có 10 nghiệm (bạn tự liệt kê)

9 tháng 2 2017

Không mất tính tổng quát ta giả sử

\(x\ge y\ge z>0\)

\(\Rightarrow\frac{1}{x}\le\frac{1}{y}\le\frac{1}{z}\)

\(\Rightarrow1=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{z}+\frac{1}{z}+\frac{1}{z}=\frac{3}{z}\)

\(\Rightarrow z\le3\)

\(\Rightarrow z=1;2;3\)

*Với z = 1 thì 

\(\Rightarrow\frac{1}{x}+\frac{1}{y}=0\)(sai vì x, y nguyên dương)

*Với z = 2 thì

\(\frac{1}{x}+\frac{1}{y}=1-\frac{1}{2}=\frac{1}{2}\)

\(\Rightarrow\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\le\frac{2}{y}\)

\(\Rightarrow y\le4\)

\(\Rightarrow y=1;2;3;4\)

+Với y = 1

\(\Rightarrow\frac{1}{x}=-\frac{1}{2}\)(loại)

+Với y = 2 thì

\(\Rightarrow\frac{1}{x}=0\)(loại)

+Với y = 3 thì

\(\frac{1}{x}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)

\(\Rightarrow x=6\)

+Với y = 4 thì

\(\frac{1}{x}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\)

\(\Rightarrow x=4\)

*Với z = 3 thì

\(\frac{1}{x}+\frac{1}{y}=1-\frac{1}{3}=\frac{2}{3}\)

\(\Rightarrow\frac{2}{3}\le\frac{2}{y}\)

\(\Rightarrow y\le3\)

\(\Rightarrow y=1;2;3\)

+ Với y = 1 thì

\(\frac{1}{x}=\frac{2}{3}-1=-\frac{1}{3}\)(loại)

+ Với y = 2 thì

\(\frac{1}{x}=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}\)

\(\Rightarrow x=6\)

+ Với y = 3 thì

\(\frac{1}{x}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\)

\(\Rightarrow x=3\)

Tới đây thì bạn tự kết luận nhé 

18 tháng 4 2017

Số nào + lại chả được 1 số thuộc Z nhỉ

Đúng 100%

Đúng 100%

Đúng 100%

18 tháng 4 2017

Bằng z chứ không phải thuộc z bạn ơi ;-;

17 tháng 12 2023

Cao nhân nào giải được bài này chưa

4 tháng 9 2019

a) ĐKXĐ: \(x;y>0\)  

 Ta có:\(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)

\(\Rightarrow\frac{4y}{4xy}+\frac{4x}{4xy}=\frac{xy}{4xy}\)

\(\Rightarrow4x+4y-xy=0\)

\(\Rightarrow x\left(4-y\right)=-4y\)

\(\Rightarrow x=\frac{-4y}{4-y}=\frac{-4\left(y-4\right)-16}{-\left(y-4\right)}\)

\(\Rightarrow x=4-\frac{16}{4-y}\)

Để x nguyên dương =>\(\hept{\begin{cases}\frac{16}{4-y}< 0\\\left(4-y\right)\inƯ\left(16\right)\end{cases}}\)

\(\Rightarrow4-y\in\left\{\pm1;\pm2;\pm4;\pm8;\pm16\right\}\)

Tìm nốt y và thay vào tìm ra x

5 tháng 9 2019

a/ \(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)

Không mất tính tổng quát giả sử: \(x\ge y\)

\(\frac{1}{4}=\frac{1}{x}+\frac{1}{y}\le\frac{2}{y}\)

\(\Leftrightarrow0< y\le8\)

\(\Rightarrow y=\left\{1;2;3;4;5;6;7;8\right\}\)làm nốt

30 tháng 4 2018

Áp dụng BĐT \(\frac{a}{b+c}\le\frac{1}{4}\left(\frac{a}{b}+\frac{a}{c}\right)\forall a;b;c>0\) ta có :

\(\frac{x}{2x+y+z}=\frac{x}{\left(x+y\right)+\left(x+z\right)}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

Tương tự ta cũng có : \(\hept{\begin{cases}\frac{y}{2y+z+x}\le\frac{1}{4}\left(\frac{y}{y+z}+\frac{y}{x+y}\right)\\\frac{z}{2z+x+y}\le\frac{1}{4}\left(\frac{z}{x+z}+\frac{z}{z+y}\right)\end{cases}}\)

Cộng các vế tương ứng của các BĐT vừa CM đc ta có :

\(\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\le\frac{1}{4}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{x+z}{x+z}\right)=\frac{3}{4}\)

Hay \(VT\le VP\)

Đẳng thức xảy ra \(\Leftrightarrow x=y=z\in Z^+\)

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

30 tháng 12 2018

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

23 tháng 4 2020

Ta có : x+1/x+y bé hơn hoặc = 1 <=> gtln = 1 tại y = 1

Tương tự ta có : gtln của VT  là 3 

Nên pt trên vô nghiệm :))

Chắc sai rồi ạ :D