Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ko phải bài của mk nên bn ko tick cx đc,mk chỉ đăng lên để giúp bn thôi
Ta có bất đẳng thức: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) với \(x,y>0\).
Dấu \(=\)xảy ra khi \(x=y\).
Ta có: \(\frac{1}{2x+y+z}=\frac{1}{x+y+x+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\)
\(\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}+\frac{1}{z}\right)=\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\).
Tương tự với hai số hạng còn lại.
Suy ra \(P\le\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)+\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)+\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\)
\(=\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{2020}{4}=505\).
Dấu \(=\)xảy ra khi \(x=y=z=\frac{3}{2020}\).
6) Ta có
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)
\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)
Bài này áp dụng BĐT này nhé , với x,y > 0 ta có :
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ( Cách chứng minh thì chuyển vế quy đồng nhé )
Áp dụng vào bài toán ta có :
\(\frac{1}{2x+y+z}=\frac{1}{4}\left(\frac{4}{\left(x+y\right)+\left(z+x\right)}\right)\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{z+x}\right)=\frac{1}{16}\left(\frac{4}{x+y}+\frac{4}{z+x}\right)\)
\(\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}\right)\)
\(\Rightarrow\frac{1}{2x+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}\right)\)
Tương tự ta có :
\(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\right)\)
Do đó : \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=\frac{1}{4}\left(x+y+z\right)=1\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{3}{4}\) (đpcm)
Ta có: \(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\le\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Tương tự: \(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\)
\(\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\)
Cộng vế theo vế có: \(VT\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=1\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{5}{x+y+z}=\frac{x+y}{2z}=\frac{y+z-1}{2x}=\frac{z+x+1}{2y}=\frac{x+y+y+z-1+z+x+1}{2z+2x+2y}=1\)
=> x + y + z = 5 : 1 = 5 (1)
x + y = 2z (2)
y + z - 1 = 2x => y + z = 2x + 1(3)
z + x + 1 = 2y => x + z = 2y - 1(4)
Thay (2) vào (1) ta có:
2z + z =5
=> 3z = 5
=> z = 5 : 3 = 1,(6)
Thay (3) vào (1) ta có:
x + 2x + 1 = 5
=> 3x = 5 - 1 = 4
=> x = 4 : 3 = 1,(3)
=> 1,(3) + y + 1,(6) = 5
=> y + 3 = 5
=> y = 5 - 3 = 2
Vậy x = 1,(3) ; y = 2 ; z = 1,(6)
Mình là học sinh lớp 7 nên ko biết đúng ko
Ta có: \(\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2yx}+\frac{z^4}{zx+2zy}\)
Áp dụng BĐT Cauchy Schwarz, ta có:
\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2yx}+\frac{z^4}{zx+2zy}\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)
=> ĐPCM
Dấu "=" xảy ra khi: \(x=y=z=\frac{1}{\sqrt{3}}\)
Áp dụng BĐT Cosi cho 2 số dương, ta có:
\(\frac{9x^3}{y+2z}+x\left(y+2z\right)\ge6x^2;\frac{9y^3}{z+2x}+y\left(z+2x\right)\ge6y^2;\frac{9z^3}{x+2y}+z\left(x+2y\right)\ge6z^3\)
Lại có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\)
Do đó \(\frac{9x^3}{y+2z}+\frac{9y^3}{z+2x}+\frac{9z^3}{x+2y}+3\left(xy+yz+zx\right)\ge6\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\frac{9x^3}{y+2z}+\frac{9y^3}{z+2x}+\frac{9z^3}{x+2y}\ge6\left(x^2+y^2+z^2\right)-3\left(xy+yz+zx\right)\ge3\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\ge\frac{x^2+y^2+z^2}{3}=\frac{1}{3}\)
Dấu "=" xảy ra <=> \(x=y=z=\frac{1}{\sqrt{3}}\)
Ta có:
\(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\) (1)
Hiển nhiên suy ra được BĐT Am-Gm
Áp dụng (1) ta được:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y};\frac{1}{y}+\frac{1}{z}\ge\frac{4}{y+z};\frac{1}{z}+\frac{1}{x}\ge\frac{4}{z+x}\)
Cộng các vế BĐT ta được
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\) (2)
Tương tự như vậy ta có:
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{y+z}\ge2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\) (3)
Áp dụng (2) và (3) ta được:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge4\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)
\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)
Vậy Max A = 1
Áp dụng BĐT \(\frac{a}{b+c}\le\frac{1}{4}\left(\frac{a}{b}+\frac{a}{c}\right)\forall a;b;c>0\) ta có :
\(\frac{x}{2x+y+z}=\frac{x}{\left(x+y\right)+\left(x+z\right)}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)
Tương tự ta cũng có : \(\hept{\begin{cases}\frac{y}{2y+z+x}\le\frac{1}{4}\left(\frac{y}{y+z}+\frac{y}{x+y}\right)\\\frac{z}{2z+x+y}\le\frac{1}{4}\left(\frac{z}{x+z}+\frac{z}{z+y}\right)\end{cases}}\)
Cộng các vế tương ứng của các BĐT vừa CM đc ta có :
\(\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\le\frac{1}{4}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{x+z}{x+z}\right)=\frac{3}{4}\)
Hay \(VT\le VP\)
Đẳng thức xảy ra \(\Leftrightarrow x=y=z\in Z^+\)