cho tam giác abc vuông tại a,ad la trung tuyến,kẻ de vuông góc ac tại e.trên tia đối của ed lấy m sao cho me=de.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
=>AEDF là hình chữ nhật
b: Xét ΔABC có
D là trung điểm của BC
DE//AC
Do đó; E là trung điểm của AB
Xét ΔBAC có
D là trung điểm của BC
DF//AB
Do đó: F là trung điểm của AC
Xét tứ giác ADBM có
E là trung điểm chung của AB và DM
=>ADBM là hình bình hành
c: Xét tứ giác ADCN có
F là trung điểm chung của AC và DN
=>ADCN là hình bình hành
=>AN//CD và AN=CD
Ta có: ADBM là hình bình hành
=>AM//BD và AM=BD
Ta có: AN//CD
AM//BD
mà B,D,C thẳng hàng
nên AN//BC và AM//BC
mà AN,AM có điểm chung là A
nên N,A,M thẳng hàng
Ta có: AM=BD
AN=CD
mà BD=DC
nên AM=AN
mà M,A,N thẳng hàng
nên A là trung điểm của MN
a) xét tam giác ADE và tam giác ABC có:
AD = AB (gt)
góc A chung
DE = BC (gt)
=> tam giác ADE = tam giác ABC (c.g.c)
b) dựa vào tam giác vuông đó bn
câu a) ko chắc!!!
ý lộn nhé góc BAC = góc DAC = 900 (đối đỉnh) chứ ko phải góc A chung đâu
76588987690
a/
Xét tf vuông ABD và tg vuông EBD có
\(\widehat{ABD}=\widehat{EBD}\) (gt)
BD chung
=> tg ABD = tg EBD (Hai yg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => AD=DE
b/
Gọi H là giao của BD và AE
Xét tg ABH và tg EBH có
tg ABD = tg EBD (cmt) => AB=EB
\(\widehat{ABD}=\widehat{EBD}\) (gt)
BH chung
=> tg ABH = tg EBH (c.g.c) => HA=HE (1)
\(\Rightarrow\widehat{AHB}=\widehat{EHB}\) mà \(\widehat{AHB}+\widehat{EHB}=\widehat{AHE}=180^o\)
\(\Rightarrow\widehat{AHB}=\widehat{EHB}=90^o\Rightarrow BD\perp AE\) (2)
Từ (1) và (2) => BD là đường trung trực của AE
c/
Gọi F' là giao của AB và DE
Xét tg vuông F'EB và tg vuông ABC có
\(\widehat{BF'E}=\widehat{BCA}\) (cùng phụ với \(\widehat{ABC}\) )
AB=EB (cmt)
=> tg F'EB = tg ABC (Hai tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau)
=> BF=BC
Xét tg F'BD và tg CBD có
BF'=BC
\(\widehat{ABD}=\widehat{EBD}\) (gt)
BD chung
=> tg F'BD = tg CBD (c.g.c) => DF' = DC
Mà DF = DC \(\Rightarrow F\equiv F'\) =>A, B, F thẳng hàng
d/
Xét tg BCF có
\(CA\perp BF;FE\perp BC\) => D là trực tâm của tg BCF
\(\Rightarrow BD\perp CF\) (trong tg 3 đường cao đồng quy)
a: Xét ΔABD và ΔECD có
DA=DE
\(\widehat{ADB}=\widehat{EDC}\)
DB=DC
Do đó: ΔABD=ΔECD
a: Xét ΔABD và ΔECD có
DA=DE
\(\widehat{ADB}=\widehat{EDC}\)
DB=DC
Do đó: ΔABD=ΔECD
a: Xét ΔABD và ΔECD có
DA=DE
\(\widehat{ADB}=\widehat{EDC}\)
DB=DC
Do đó: ΔABD=ΔECD
hỏi ngu