Cho tam giácABC(gócB=90 độ) phân giácAD củaBAC. Lấy điểm E thuộc cạnhAC sao cho AE=AB
a)cm tam giácABD=tam giácAED
b)cmDE vuông góc AC
c)cmBE vuông góc AD
CÁC BẠN GIÚP MÌNH VỚI /MÌNH CẢM ƠN CÁC BẠN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai điểm A và B thuộc đoạn thẳng PQ sao cho PA = QB, so sánh 2 đoạn thẳng HI và IK.
BÀI NÀY LÀM NHƯ NÀO ZẬY. GIÚP MÌNH VỚI NHÉ!
a) Ta có tam giác ABC cân tại A nên: \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\)(1)
Xét tam giác ADE có AD=AE (gt)
=> tam giác ADE cân tại A => \(\widehat{AED}=\widehat{ADE}=\frac{180^0-\widehat{A}}{2}\)(2)
Từ (1) và (2) => \(\widehat{AED}=\widehat{B}\)
Mà 2 góc ở vị trí đồng vị nên \(DE//BC\)(đccm)
b)Ta có AB=AE+EB và AC=AD+CD mà AB=AC, AE=AD => EB= CD
Xét tam giác BEC, tam giác BCD có:
EB= CD
\(\widehat{B}=\widehat{C}\)
BC chung
=> tam giác BEC= tam giác CDB ( c_g_c)
=>\(\widehat{BEC}=\widehat{BDC}=90^0\)
=> \(CE\perp AB\)(ĐCCM)
a:
ABCD là hình thoi
=>\(\widehat{C}+\widehat{B}=180^0\) và \(\widehat{B}=\widehat{D}=60^0\)
=>\(\widehat{C}=180^0-60^0=120^0\)
Xét ΔAFB vuông tại F và ΔAED vuông tại E có
AB=AD
\(\widehat{B}=\widehat{D}\)
Do đó: ΔAFB=ΔAED
=>AF=AE và BF=ED
Xét tứ giác AECF có
\(\widehat{AEC}+\widehat{AFC}+\widehat{C}+\widehat{FAE}=360^0\)
=>\(\widehat{FAE}+120^0+90^0+90^0=360^0\)
=>\(\widehat{FAE}=60^0\)
Xét ΔAEF có AE=AF và \(\widehat{FAE}=60^0\)
nên ΔAEF đều
b: CE+ED=CD
CF+FB=CB
mà CD=CB và ED=FB
nên CE=CF
Xét ΔCBF có \(\dfrac{CE}{CD}=\dfrac{CF}{CB}\)
nên EF//BD
1,a, cm: tam giác BEC và tg BDC(c.g.c0
b, cm : tg ABE= tg ACD(c,g.c)
c, cm: BK=KC ( cm: tg BKD= tg CED)
CHO tam giác ABC có A =90 ,AB=8CM,AC=6CM
a, Tính BC
b, Trên cạnh AC lấy điểm E sao cho AE=2CM,, Trên tia đối của tia AB lấy điểm D sao cho AD=AB.chứng minh tam giác BEC=DEC
c, Chuwsngh minh DE ĐI QUA trung điểm cạnh BC
A) Xét tam giác ABH và tam giác ADH có :
HB=HD ( giả thiết)
HA ( cạnh chung)
góc DHA=góc BHA=90độ
suy ra tam giác ABH=tam giác ADH ( C-G-C)
B)Xét tam giác EHD và tam giác BHAcó:
HE=HA( GT)
góc AHB=góc DHE(hai góc đối đỉnh )
HD=HB( GT)
vậy suy ra : tam giácBHA= tam giác EHD( C-G-C)
vậy BA=ED( hai cạnh tương ứng)
C)ta gọi giao điểm của ED và AC là I
ta có góc IEA = góc EAB( hai góc tương ứng)
mà hai góc này lại ở
vị trí sole trong ở hai đoạn thẳng BA và EI
suy ra : BAsong song với EI
mà ta lại có góc BAI = 90 độ mà lại bù nhau với góc EIA vậy góc EIA =180 độ - 90 độ =90 độ
vậy EI vuong góc với AC