K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2022

Ta có : CD=AB=6cm

           AD=BC=5cm

Ta có : O là giao điểm của hai đường chéo

AC=2OA=2.2=4

đây nha bạn

 

 

10 tháng 11 2021

Câu 28. Tổ công tác Covid-19 của bệnh viện Đại học Y Dược gồm 90 bác sĩ và 84 y tá được phân công về 1 huyện để thực hiện xét thần tốc nhằm khoanh vùng dập dịch và điều trị Covid-19 trong các khu cách ly. Muốn phục vụ được nhiều xã hơn, đội dự định chia thành các tổ sao cho số bác sĩ và y tá của các tổ bằng nhau. Hỏi có thể chia được nhiều nhất thành bao nhiêu tổ? Mỗi tổ có mấy bác sĩ, mấy y tá? 

A. 12 tổ; 6 bác sĩ và 5 y tá.    B. 12 tổ; 5 bác sĩ và 6 y tá. 

C. 6 tổ; 15 bác sĩ và 14 y tá. D. 6 tổ; 14 bác sĩ và 15 y tá. 

4 tháng 10 2021

Ta có: ABCD là hình bình hành

\(\left\{{}\begin{matrix}CD=AB=8cm\\BC=AD=5cm\end{matrix}\right.\)

Ta có: O là giao điểm 2 đường chéo

\(\Rightarrow AC=2OC=2.3=6\left(cm\right)\)

5 tháng 8 2019

Vì hình bình hành ABCD có 2 cạnh liền kề bằng nhau AB = BC nên ABCD là hình thoi

Suy ra: AB = BC = CD= DA = 10cm và O là trung điểm của AC và trung điểm của BD

Ta có: AC = 2AO = 2. 6 = 12cm

Áp dụng định lí py tago vào tam giác AOD có:

A D 2 = A O 2 + O D 2  suy ra: O D 2 = A D 2 – A O 2 = 10 2 – 6 2 = 64  nên OD = 8cm

Suy ra: BD = 2OD = 16cm

Diện tích hình thoi ABCD là:

Bài tập: Diện tích hình thoi | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án A

6 tháng 2 2022

c. -Xét △ADC có: OM//DC (gt).

\(\Rightarrow\dfrac{MO}{DC}=\dfrac{AO}{AC}\) (định lí Ta-let).

\(\Rightarrow\dfrac{DC}{MO}=\dfrac{AC}{AO}\)

\(\Rightarrow\dfrac{DC}{OM}-1=\dfrac{OC}{AO}\) (1).

-Xét △BDC có: ON//DC (gt).

\(\Rightarrow\dfrac{ON}{DC}=\dfrac{BO}{BD}\) (định lí Ta-let).

\(\Rightarrow\dfrac{DC}{ON}=\dfrac{BD}{BO}\)

\(\Rightarrow\dfrac{DC}{ON}-1=\dfrac{OD}{BO}\)

-Xét △ABO có: AB//DC (gt).

\(\Rightarrow\dfrac{OD}{BO}=\dfrac{OC}{OA}=\dfrac{DC}{AB}\) (3)

-Từ (1), (2),(3) suy ra:

\(\dfrac{DC}{OM}-1=\dfrac{DC}{ON}-1=\dfrac{DC}{AB}\)

\(\Rightarrow\dfrac{DC}{OM}=\dfrac{DC}{ON}=\dfrac{DC}{AB}+1=\dfrac{AB+DC}{AB}\)

\(\Rightarrow\dfrac{1}{OM}=\dfrac{1}{ON}=\dfrac{AB+DC}{AB.DC}=\dfrac{1}{AB}+\dfrac{1}{CD}\)

a: Xét ΔAOB và ΔCOD có 

\(\widehat{OAB}=\widehat{OCD}\)

\(\widehat{AOB}=\widehat{COD}\)

Do đó: ΔAOB∼ΔCOD

Suy ra: \(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}\)

hay \(OA\cdot OD=OB\cdot OC\)

b: \(\dfrac{OA}{OC}=\dfrac{AB}{CD}\)

\(\Leftrightarrow OA=\dfrac{1}{2}\cdot6=3\left(cm\right)\)

 

20 tháng 5 2017

Theo tính chất hình bình hành ta có: I là trung điểm của AC và BD.

Suy ra:

Bài tập: Hình thoi | Lý thuyết và Bài tập Toán 8 có đáp án

Xét tam giác AID có:  A I 2 + I D 2 = A D 2   ( 3 2 + 4 2 = 5 2 = 25 )

Suy ra: tam giác AID là tam giác vuông: AI ⊥ DI hay AC ⊥ BD

Hình bình hành ABCD có 2 đường chéo AC và BD vuông góc với nhau nên là hình thoi.

Suy ra: AB = BC = CD = DA = 5cm

Chọn đáp án B

TỰ VẼ HÌNH NHA

a) Xét ΔABO và ΔCOD có:

\(\widehat{ABO}=\widehat{COD}\left(AB//DC\right)\)

\(\widehat{AOB}=\widehat{DOC}\left(đđ\right)\)

=> \(\text{ Δ}ABO~\text{Δ}COD\left(g.g\right)\)

\(\Rightarrow\frac{OA}{OB}=\frac{OC}{OD}\)

\(\Leftrightarrow OA.OD=OB.OC\)

b) vì ΔABO~ΔCOD

=> \(\frac{DC}{OC}=\frac{AB}{OA}\)

\(\Leftrightarrow DC.OA=AB.OC\)

\(\Leftrightarrow10.OA=5.6\)

\(\Leftrightarrow OA=3\left(cm\right)\)

OE thì mk chịu

3 tháng 2 2021

OE = OA nhưng không biết cách giải