K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2016

cát tuyến là đường thẳng cắt đường tròn tại 2 điểm

5 tháng 4 2016

mà làm sao để em vẽ đc cát tuyến mà điểm thứ nhất cắt đg tròn nắm giữa điểm đầu và điểm cắt đg tròn thứ 2

20 tháng 5 2021

xét (O) có MA ,MB là các tiếp tuyến(A,B là tiếp điểm)

=>góc  OAM=90 độ

góc OBM=90 độ

=>góc OAM+góc OBM=180 độ

2 góc này ở vị trí  đối diện=> tứ giác MAOB nội tiếp

NV
21 tháng 4 2023

Em kiểm tra lại đề câu d, điểm A đã cố định nên đề ko thể là xác định vị trí A được, chỉ có xác định vị trí d qua O sao cho diện tích tam giác kia min thôi

a: góc OBA+góc OCA=180 độ

=>OBAC nội tiếp đường tròn đường kính OA(1)

ΔOMN cân tại O

mà OH là trung tuyến

nên OH vuông góc MN

=>OH vuông góc HA

=>H nằm trên đường tròn đường kính OA(2)

Từ (1), (2) suy ra O,H,B,A,C cùng nằm trên đường tròn đường kính AO

b: Xét ΔABM và ΔANB có

góc ABM=góc ANB

góc BAM chung

=>ΔABM đồng dạng với ΔANB

=>AB/AN=AM/AB

=>AB^2=AN*AM

Xét ΔKCO vuông tại C và ΔKHA vuông tại H có

góc K chung

=>ΔKCO đồng dạng với ΔKHA

=>KC/KH=KO/KA

=>KC*KA=KO*KH

c: góc ABE+góc OBE=90 độ

góc CBE+góc OEB=90 độ

mà góc OBE=góc OEB

nên góc ABE=góc CBE

=>BE là phân giác của góc ABC

mà AE là phan giác góc BAC

nên E cách đều AB,BC,AC

7 tháng 6 2021

a) Ta có: \(\angle ABO+\angle ACO=90+90=180\Rightarrow ABOC\) nội tiếp 

Lại có: \(\angle AIO=\angle ABO=90\Rightarrow ABIO\) nội tiếp

\(\Rightarrow A,B,I,O,C\) cùng thuộc 1 đường tròn

\(\Rightarrow ABIC\) nội tiếp 

\(\Rightarrow\angle AIB=\angle ACB=\angle ABC\) (\(\Delta ABC\) cân tại A) \(=\angle AIC\)

\(\Rightarrow IA\) là phân giác \(\angle CIB\)

b) Xét \(\Delta ABM\) và \(\Delta ANB:\) Ta có: \(\left\{{}\begin{matrix}\angle ABM=\angle ANB\\\angle NABchung\end{matrix}\right.\)

\(\Rightarrow\Delta ABM\sim\Delta ANB\left(g-g\right)\Rightarrow\dfrac{AB}{AN}=\dfrac{AM}{AB}\Rightarrow AB^2=AM.AN\)

mà \(AB^2=AH.AO\) (hệ thức lượng) \(\Rightarrow AH.AO=AM.AN\)

\(\Rightarrow\dfrac{AH}{AM}=\dfrac{AN}{AO}\)

Xét \(\Delta AHM\) và \(\Delta ANO:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{AH}{AM}=\dfrac{AN}{AO}\\\angle NAOchung\end{matrix}\right.\)

\(\Rightarrow\Delta AHM\sim\Delta ANO\left(c-g-c\right)\Rightarrow\angle AHM=\angle ANO\)

\(\Rightarrow MHON\) nội tiếp \(\Rightarrow H\in\left(OMN\right)\)undefined

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
22 tháng 3 2018

a)  Chứng minh tứ giác ABOC nội tiếp được đường tròn.

A B O ^ = 90 0 A C O ^ = 90 0 A B O ^ + A C O ^ = 180 0

=> tứ giác ABOC nội tiếp được đường tròn.

b)  Vẽ cát tuyến ADE  của (O) sao cho ADE  nằm giữa 2 tia AO, AB; D, E Î (O) và D nằm giữa A, E. Chứng minh  A B 2 = A D . A E .

Tam giác ADB đồng dạng với tam giác ABE

⇒ A B A E = A D A B ⇔ A B 2 = A D . A E

c)  Gọi F là điểm đối xứng của D qua AO, H là giao điểm của AO và BC. Chứng minh: ba điểm E, F, H  thẳng hàng.

Ta có  D H A ^ = E H O ^

nên  D H A ^ = E H O ^ = A H F ^ ⇒ A H E ^ + A H F ^ = 180 0 ⇒ 3 điểm E, F, H  thẳng hàng.

19 tháng 5 2022

Có 1 phần câu trả lời ở đây.

Giải toán: Bài hình trong đề thi HK2 Lớp 9 | Rất phức tạp. - YouTube

a: ΔOED cân tại O có OF là trung tuyến

nên OF vuông góc ED

góc OFA=góc OBA=góc OCA=90 độ

=>O,F,B,A,C cùng thuộc 1 đường tròn

b: góc DHC=góc CBA

góc CBA=góc DFC

=>góc DHC=góc DFC