K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2021

\(a,\left\{{}\begin{matrix}AB=AC\\BD=DC\\AD\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABD=\Delta ACD\left(c.c.c\right)\\ b,\Delta ABD=\Delta ACD\\ \Rightarrow\widehat{BAD}=\widehat{CAD}\\ c,\Delta ABD=\Delta ACD\\ \Rightarrow\widehat{ADB}=\widehat{ADC}\\ \text{Mà }\widehat{ADB}+\widehat{ADC}=180^0\\ \Rightarrow\widehat{ADC}=\widehat{ADB}=90^0\\ \Rightarrow AD\perp BC\)

22 tháng 12 2021

a: Xét ΔABD và ΔACD có

AB=AC

AD chung

BD=CD

Do đó: ΔABD=ΔACD

a: Xét ΔABC có \(\widehat{B}=\widehat{C}\)

nên ΔABC cân tại A

hay AB=AC

b: Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

c: Xét ΔACD và ΔABE có 

AC=AB

CD=BE

AD=AE

Do đó: ΔACD=ΔABE

d: Ta có: ΔABC can tại A

mà AH là đường cao

nên H là trung điểm của BC

Ta có: DB+BH=DH

CE+CH=HE

mà DB=CE

và BH=CH

nên DH=HE

hay H là trung điểm của DE

Xét ΔADE có AD=AE
nên ΔADE cân tại A

mà AH là đường trung tuyến

nên AH là tia phân giác của góc DAE

22 tháng 12 2021

a: Xét ΔABD và ΔACD có

AB=AC

AD chung

BD=CD

Do đó: ΔABD=ΔACD

6 tháng 1 2022

Bài 1:

undefined

Bài 2:

undefined

16 tháng 2 2022

a) Xét tam giác ABD và tam giác ACD:

AD chung.

AB = AC (gt).

BD = CD (D là trung điểm của BC).

\(\Rightarrow\Delta ABD=\Delta ACD\left(c-c-c\right).\)

b) Xét tam giác ABC: AB = AC (gt).

\(\Rightarrow\Delta ABC\) cân tại A.

Mà AD là trung tuyến (D là trung điểm của BC).

\(\Rightarrow\) AD là phân giác \(\widehat{BAC}\) (Tính chất tam giác cân).

Xét tam giác MAD và tam giác NAD:

AD chung.

AM = AN (gt).

\(\widehat{MAD}=\widehat{NAD}\) (AD là phân giác \(\widehat{BAC}\)).

\(\Rightarrow\Delta MAD=\Delta NAD\left(c-g-c\right).\)

\(\Rightarrow\) DM = DN (2 cạnh tương ứng).

c) Xét tam giác ADC và tam giác EDB:

DC = DB (D là trung điểm của BC).

AD = ED (gt).

\(\widehat{ADC}=\widehat{EDB}\) (Đối đỉnh).

\(\Rightarrow\Delta ADC=\Delta EDB\left(c-g-c\right).\)

\(\Rightarrow\widehat{CAD}=\widehat{BED}\) (2 góc tương ứng).

\(\Rightarrow\) AC // BE.

Mà \(DK\perp BE\left(gt\right).\)

\(\Rightarrow\) \(DK\perp AC.\left(1\right)\)

Ta có: \(\widehat{AMD}=\widehat{AND}\) \(\left(\Delta MAD=\Delta NAD\right).\)

Mà \(\widehat{AMD}=90^o\left(AM\perp MD\right).\)

\(\Rightarrow\widehat{AND}=90^o.\Rightarrow AC\perp ND.\left(2\right)\)

Từ (1); (2) \(\Rightarrow N;D;K\) thẳng hàng.

Xet ΔABD và ΔCBA có

AB/CB=BD/BA

góc B chung

=>ΔABD đồng dạng vơi ΔCBA

a: Xet ΔEBD vuông tại E và ΔFCD vuông tại F có

BD=CD

góc B=góc C

=>ΔEBD=ΔFCD

b: Xet ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

DE=DF

=>ΔAED=ΔAFD