K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: Có bao nhiêu cách sắp xếp 5 người khách gồm 3 nam và 2 nữ ngồi vào một hàng 5 ghế nếu:  a. Họ ngồi chỗ nào cũng được?  b. Nam ngồi kề nhau, nữ ngồi kề nhau?  c. Nam và nữ ngồi xen kẻ nhau?  d. Có 2 người luôn ngồi cạch nhau?Câu 2: Có bao nhiều cách sắp xếp chỗ ngồi cho 5 người khách: a.  Vào 5 ghế xếp thành một dãy sao cho vị khách A luôn ngồi chính giữa b. Vào 5 ghế chung quanh một...
Đọc tiếp

Câu 1: Có bao nhiêu cách sắp xếp 5 người khách gồm 3 nam và 2 nữ ngồi vào một hàng 5 ghế nếu:

  a. Họ ngồi chỗ nào cũng được?
  b. Nam ngồi kề nhau, nữ ngồi kề nhau?
  c. Nam và nữ ngồi xen kẻ nhau?
  d. Có 2 người luôn ngồi cạch nhau?
Câu 2: Có bao nhiều cách sắp xếp chỗ ngồi cho 5 người khách:
 a.  Vào 5 ghế xếp thành một dãy sao cho vị khách A luôn ngồi chính giữa
 b. Vào 5 ghế chung quanh một bàn tròm, nếu không có sự phân biệt giữa các ghế này 
Câu 3: Có bao nhiêu cách sắp xếp chỗ ngồi 6 người ngồi vào một dãy 6 ghế hàng ngang nếu:
a. Có 3 người trong số đó muốn ngồi kề nhau
b. Có 2 người trong số đó không muốn ngồi kề nhau
Câu 4: Từ 5 bông vang, 3 bông trắng và 4 bông đỏ( các bông hoa xem như đôi một khác nhau ), ta chọn ra một bó gồm 7 bông:
a. Có bao nhiêu cách chọn ra bó hoa trong đó có đúng một bông đỏ
b. Có bao nhiêu cách chọn ra bó hoa trong đó có ít nhất 3 bông đỏ
c. Có bao nhiêu cách chọn ra bó hoa trong đó có mỗi màu có ít nhất 2 bông

0
2 tháng 5 2019

 Ta coi ba ghế nam ngồi là một nhóm; 2 ghế nữ ngồi là một nhóm; mội ghế trống là một nhóm. Ta có 5 nhóm.

Chọn 2 nhóm ghế để xếp nam và nữ có  cách. Trong số đó có 8 cách xếp nhóm nam và nhóm nữ ngồi kề nhau.

Do đó ta có 20-8=12 cách chọn vị trí để xếp nam và nữ thỏa bài toán. Ứng với mỗi cách xếp trên , ta có 3! cách xếp chỗ cho nam vào ba ghế dành cho nam và có 2! cách xếp 2 nữ ngồi vào 2 vị trí dành cho nữ.

Vậy ta có tất cả 12.3!.2!=144  cách xếp thỏa yêu cầu bài toán.

Chọn C.

a: Số cách xếp là: \(A^5_{10}=30240\left(cách\right)\)

b: TH1: 3 nam 2 nữ

=>Số cách xếp là: \(3!\cdot2!\cdot2!\)(cách)

TH2: 2 nam 3 nữ

=>Số cách xếp là: 2!*3!*2!(cách)

TH3: 1 nam 4 nữ

=>Số cách xếp là 1!*4!*2!(cách)

TH4: 0 nam 5 nữ

=>Số cách xếp là 5!(cách)

=>Số cách là \(2!\cdot2!\cdot3!+2!\cdot2!\cdot3!+1!\cdot4!\cdot2!+5!\left(cách\right)\)

c: Số cách chọn 2 nữ trong 7 nữ là: 

\(C^2_7\left(cách\right)\)

Số cách xếp 3 nam và 2 nữ là:

\(3!\cdot3!\left(cách\right)\)

=>Số cách là: \(C^2_7\cdot3!\cdot3!\left(cách\right)\)

8 tháng 1 2023

amagzic

30 tháng 5 2023

a) Xác suất là 2/10 hoặc 1/5. 
b) Xác suất là 3/10 hoặc 3/10. Giải bằng công thức hoặc bảng xác suất.

30 tháng 7 2019

Ta có 4 trường hợp sau :

 Ghế thứ 6, 7, 8 trống ;

 Ghế thứ 1, 7, 8 trống ;

 Ghế thứ 1, 2, 8 trống ;

 Ghế thứ 1, 2, 3 trống.

Mỗi cách xếp trên có 5! cách xếp 5 người ngồi vào 5 ghế còn lại ( khác các ghế trống ) . Vậy có tất cả 4.5! = 480 cách xếp.

Chọn B.

9 tháng 12 2017

        ·     Gọi nhóm I là nhóm ghế của 4 bạn nam, số cách xếp là 4!, tương tự với 2 bạn nữ là nhóm II với số cách xếp là 2!.

        ·       Rõ ràng khi xếp 6 bạn này vào hàng 9 ghế thì ta còn 3 ghế trống. Chia 9 hàng ghế này thành 5 phần có thứ tự, trong đó 2 phần bất kì nào dành cho nhóm I và nhóm II thì 3 phần còn lại sẽ là 3 chiếc ghế trống.

        ·       Số cách xếp 2 nhóm vào 9 hàng ghế sao cho nam ngồi liền nhau, nữ ngồi liền nhau là:   Coi nhóm I, nhóm II và 1 ghế trống ở giữa 2 nhóm này là 1 nhóm đại diện, số nhóm đại diện là 2!. Lúc này 9 ghế hàng ngang thì còn lại 2 ghế trống. Tương tự chia 9 hàng ghế làm 3 phần với ý tưởng khi nhóm đại diện rơi vào 1 phần nào đó thì 2 phần còn lại sẽ là ghế trống, khi đó số cách xếp nam ngồi liền nhau, nữ ngồi liền nhau và giữa 2 nhóm có đúng 1 ghế trống là: 

Vậy số cách xếp cần tìm là: 

chọn B.

16 tháng 10 2019

Đáp án C

Xét 2 khả năng:

+) Trường hợp ở giữa có 3 ghế  có thể xếp nam  ở bên phải hoặc trái nên số cách xếp

là 2.4!.2!=96 

+) Trường hợp ở giữa có 2 ghế thì ghế ngoài cùng bên phải hoặc bên trái sẽ trống.

Tương ứng số cách sắp xếp là  2.2.4!.2!=192 

Vậy số cách sắp xếp là 192 + 96 = 288 

20 tháng 3 2019

Xét 2 khả năng:

+) Trường hợp ở giữa có 3 ghế  có thể xếp nam  ở bên phải hoặc trái nên số cách xếp 

là  2 . 4! . 2! = 96  

+) Trường hợp ở giữa có 2 ghế thì ghế ngoài cùng bên phải hoặc bên trái sẽ trống. Tương ứng số cách sắp xếp là 2 . 2 . 4! . 2! = 192

Vậy số cách sắp xếp là 192 + 96 = 288

Đáp án cần chọn là C

2 tháng 12 2018

Đáp án C

Xét 2 khả năng:

+) Trường hợp ở giữa có 3 ghế  có thể xếp nam  ở bên phải hoặc trái nên số cách xếp 

2.4!.2!=96

+) Trường hợp ở giữa có 2 ghế thì ghế ngoài cùng bên phải hoặc bên trái sẽ trống

Tương ứng số cách sắp xếp là 2.2.4!.2!=192

Vậy số cách sắp xếp là 192 + 96 = 288