K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2021

\(\dfrac{x^4-2x^2+1}{x^3+2x^2+x}=\dfrac{\left(x^2-1\right)^2}{x\left(x^2+2x+1\right)}=\dfrac{\left(x-1\right)^2\left(x+1\right)^2}{x\left(x+1\right)^2}=\dfrac{\left(x-1\right)^2}{x}\)

6 tháng 12 2021

\(=\dfrac{\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(y-x\right)\left(y^2+xy+x^2\right)}=\dfrac{-\left(y-x\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(y-x\right)\left(y^2+xy+x^2\right)}=\dfrac{-\left(x+y\right)\left(x^2+y^2\right)}{x^2+xy+y^2}\)

6 tháng 12 2021

Tham khảo:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

6 tháng 12 2021

\(\dfrac{7x^3+14x^2+7x}{14x^2+14x}=\dfrac{7x\left(x^2+2x+1\right)}{14x\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{2\left(x+1\right)}=\dfrac{x+1}{2}\)

6 tháng 12 2021

\(\dfrac{7x^3+14x^2+7x}{14x^2+14x}=\dfrac{7x\left(x^2+2x+1\right)}{14x\left(x+1\right)}=\dfrac{7x\left(x+1\right)^2}{14x\left(x+1\right)}=\dfrac{\left(x+1\right)}{2}\)

3 tháng 1 2021

giúp mik vs ạ

3 tháng 1 2021

câu 1 phải ko bạn

 

NV
7 tháng 5 2023

\(\left(x-2\right)\left(2x^3-x^2+1\right)+\left(x-2\right).x^2.\left(1-2x\right)\)

\(=\left(x-2\right)\left(2x^3-x^2+1\right)+\left(x-2\right)\left(x^2-2x^3\right)\)

\(=\left(x-2\right)\left(2x^3-x^2+1+x^2-2x^3\right)\)

\(=\left(x-2\right).1\)

\(=x-2\)

7 tháng 5 2023

Ta có:

\(\left(x-2\right)\left(2x^3-x^2+1\right)+\left(x-2\right)x^2\left(1-2x\right)\)

\(=\left(x-2\right)\left(2x^3-x^2+1\right)+\left(x-2\right)\left(x^2-2x^3\right)\)

\(=\left(x-2\right)\left[\left(2x^3-x^2+1\right)+\left(x^2-2x^3\right)\right]\)

\(=\left(x-2\right)\left(2x^3-x^2+1+x^2-2x^3\right)\)

\(=\left(x-2\right).1\)

\(=x-2\)

 

18 tháng 9 2023

a) \(\dfrac{x^3-1}{x^2+x+1}=\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x^2+x+1}=x-1\)

b) \(\dfrac{x^2+2xy+y^2}{2x^2+xy-y^2}\)

\(=\dfrac{\left(x+y\right)^2}{x^2+xy+x^2-y^2}=\dfrac{\left(x+y\right)^2}{x\left(x+y\right)+\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{\left(x+y\right)^2}{\left(2x-y\right)\left(x+y\right)}=\dfrac{x+y}{\left(2x-y\right)}\)

c) \(\dfrac{ax^4-a^4x}{a^2+ax+x^2}\)

\(=\dfrac{ax\left(x^3-a^3\right)}{a^2+ax+x^2}\)

\(=\dfrac{ax\left(x-a\right)\left(a^2+ax+x^2\right)}{a^2+ax+x^2}\)

\(=ax\left(x-a\right)\)

21 tháng 12 2022

\(\left(2x-3\right)\left(4x^2+6x+9\right)-4x\left(2x^2-1\right)\)

\(=8x^3-27-8x^3+4x\\ =8x^3-8x^3+4x-27\\ =4x-27\)

21 tháng 12 2022

mình cảm ơn

 

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

Lời giải:
$\frac{4x^2-3x+8}{x^3-1}$
$\frac{2x}{x^2+x+1}=\frac{2x(x-1)}{(x-1)(x^2+x+1)}=\frac{2x^2-2x}{x^3-1}$

$\frac{6}{1-x}=\frac{-6(x^2+x+1)}{(x-1)(x^2+x+1)}=\frac{-6x^2-6x-6}{x^3-1}$