K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2021

Dựng CH _|_ AB => CH _|_ (SAB)

Giả sử MN cắt AD tại F. Theo định lý Talet ta có:

\(\frac{DF}{MC}=\frac{ND}{NC}=\frac{1}{2}\Rightarrow DF=\frac{MC}{2}=\frac{a}{4}\)

Khi đó \(\frac{PA}{PC}=\frac{AF}{MC}=\frac{5}{2}\Rightarrow\frac{CA}{PA}=\frac{7}{5}\)

Do đó: d (P;(SAB))=\(\frac{5}{7}d\left(C;\left(SAB\right)\right)=\frac{5}{7}CH=\frac{5}{7}\cdot\frac{a\sqrt{3}}{2}=\frac{5a\sqrt{3}}{14}\)

8 tháng 5 2021

\(\dfrac{\sqrt{3}a5}{14}\)

18 tháng 12 2016

a) Dễ dàng chứng minh tam giác ABC và ACD đều

Suy ra AC=a, SA= AC.tan(gócSCA)=a.tan(600)

\(V_{S.ABCD}=\frac{1}{3}.SA.S_{ABCD}=\frac{1}{3}.a\sqrt{3}.a^2.\frac{\sqrt{3}}{2}=\frac{a^3}{2}\)

b) Có 2 cách làm để tìm khoảng cách từ H đến mp(SCD), nhưng bạn nên chọn phương pháp tọa độ hóa cho dễ

Chọn A làm gốc tọa độ , các tia AD, AI, AS lần lượt trùng tia Ax, Ay, Az

Có ngay tọa độ các điểm \(S\left(0;0;a\sqrt{3}\right)\) , \(D\left(a;0;0\right)\) , \(I\left(0;\frac{a\sqrt{3}}{2};0\right)\)

\(\Rightarrow C\left(\frac{a}{2};\frac{a\sqrt{3}}{2};0\right)\)

theo số liệu đã cho, dễ xác định được điểm H chia đoạn SI với tỷ lệ 2:1

\(\Rightarrow H\left(0;\frac{a}{\sqrt{3}};\frac{a}{\sqrt{3}}\right)\)

Bây giờ chỉ cần viết pt (SCD) là tính được ngay khoảng cách từ H đến SCD

\(\left(SCD\right):\sqrt{3}x+y+z-\sqrt{3}=0\)

\(d\left(H\text{/}\left(SCD\right)\right)=\frac{a\sqrt{3}}{\sqrt{5}}\)

18 tháng 12 2016

Bạn ơi bạn chỉ mình cách bình thường được ko? Vì mình chưa học tọa độ hóa.

22 tháng 8 2018

26 tháng 10 2017

Chọn đáp án C.

Gọi O là tâm của hình vuông ABCD thì  B D ⊥ S A O

12 tháng 8 2017

9 tháng 7 2019

7 tháng 3 2019

Ta có

Do 

Có 

Ta lại có 

và 

Khi đó

Do đó 

Chọn đáp án C.

18 tháng 3 2019

Đáp án B

Ta có: B C ⊥ A B B C ⊥ S A ⇒ B C ⊥ M A  

Mặt khác A M ⊥ S B ⇒ A M ⊥ S B C ⇒ A N ⊥ S C , tương tự A N ⊥ S C  

Do đó S C ⊥ A M N , mặt khác ∆ S B C  vuông tại B suy ra  tan B S C ^ = B C S B = a S A 2 + A B 2 = 1 3

⇒ S B ; S C ^ = B S C ^ = 30 ° ⇒ S B ; A M N ^ = 60 ° .

23 tháng 10 2021

sao suy ra được góc giữa SB; AMN = 60 ạ?

 

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

\(SA \bot \left( {ABCD} \right) \Rightarrow \left( {SC,\left( {ABCD} \right)} \right) = \left( {SC,AC} \right) = \widehat {SCA}\)

\(ABCD\) là hình vuông \( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}}  = b\sqrt 2 \)

\(\cos \widehat {SCA} = \frac{{AC}}{{SC}} = \frac{1}{2} \Rightarrow \widehat {SCA} = {60^ \circ }\)

Vậy \(\left( {SC,\left( {ABCD} \right)} \right) = {60^ \circ }\)

Chọn A.

20 tháng 12 2017

Giải bài 6 trang 105 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 6 trang 105 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 6 trang 105 sgk Hình học 11 | Để học tốt Toán 11