4/3x-2y=3/2z-4x=2/4y-3z và x+y-z= -10 CÁC BẠN GIẢI VÀ CHO MIK CÁCH VÌ SAO CÁC BẠN GIẢI ĐC LUN NHÉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có:
\(\dfrac{4}{3x-2y}=\dfrac{3}{2z-4x}=\dfrac{2}{4y-3z}\)
\(\Rightarrow\)4(2z-4x) = 3(3x-2y)
3(4y-3z) = 2(2z-4x)
Ta có:
4(2z-4x) = 3(3x-2y)\(\Rightarrow\)8z-16x = 9x-6y\(\Rightarrow y=\dfrac{25x-8z}{6}\) (1)
\(\dfrac{3}{2z-4x}=\dfrac{2}{4y-3z}\Rightarrow3\left(4y-3z\right)=2\left(2z-4x\right)\)
\(\Rightarrow12y-9z=4z-8x\Rightarrow12y+8x=13z\) (2)
Thay (1) vào (2) ta có:
2(25x-8z)+8x = 13z\(\Rightarrow\)58x = 29z\(\Rightarrow\)z = 2x\(\Rightarrow\)y = \(\dfrac{3}{2}x\)
Thay vào đề bài x + y- z= - 10 ta tìm được:
x = -10; y = -20; z = -30
Ta có : \(\frac{4}{3x-2y}=\frac{3}{2z-4x}=\frac{2}{4y-3z}\) với x+y-z = -10 (1)
\(\Rightarrow4\left(2z-4x\right)=3\left(3x-2y\right)\) ; \(3\left(4y-3z\right)=2\left(2z-4x\right)\)
Ta có :
+) \(4\left(2z-4x\right)=3\left(3x-2y\right)\Rightarrow8z-16x=9x-6y\)\(\Rightarrow y=\frac{25x-8z}{y}\left(2\right)\)
+) \(3\left(4y-3z\right)=2\left(2z-4x\right)\Rightarrow12y-9z=4z-8x\)\(\Rightarrow12y+8x=13z\left(3\right)\)
Thay (1) vào (2) ta có :
\(2\left(25x-8z\right)+8x=13z\)
\(\Rightarrow50x-16z+8x=13z\)
\(\Rightarrow58x=29z\)
\(\Rightarrow2x=z\) (4)
\(\Rightarrow y=\frac{3}{2}x\) (5)
thay (4) và (5) vào biểu thức x+y-z = -10 ta có :
\(x+y-z=-10\Leftrightarrow x+\frac{3}{2}x-2x=-10\)
\(\Rightarrow\frac{1}{2}x=-10\)
\(\Rightarrow x=-20\) ; \(y=\frac{3}{2}\left(-20\right)=-30\) ; \(z=-20\cdot2=-40\)
vậy \(x=-20;y=-30;z=-40\)
Theo đề bài ta có:
43x−2y=32z−4x=24y−3z43x−2y=32z−4x=24y−3z
⇒⇒4(2z-4x) = 3(3x-2y)
3(4y-3z) = 2(2z-4x)
Ta có:
4(2z-4x) = 3(3x-2y)⇒⇒8z-16x = 9x-6y⇒y=25x−8z6⇒y=25x−8z6 (1)
32z−4x=24y−3z⇒3(4y−3z)=2(2z−4x)
HT ( mặc dù hơi rối )
\(\dfrac{3x-2y}{4}=\dfrac{4y-3z}{2}=\dfrac{2z-4x}{3}=\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\\ \Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\2z-4x=0\\4y-3z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{z}{4}=\dfrac{x}{2}\end{matrix}\right.\\ \Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x-2y+3z}{2-6+12}=\dfrac{8}{8}=1\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\\z=4\end{matrix}\right.\)
= (3x-2y)/4 = (2z-4x)/3 = (4y-3z)/2
= (12x-8y)/16 = (6z-12x)/9
= (8y-6z)/4
= (12x-8y + 6z-12x + 8y-6z)/(16+9+4) = 0
<=>
{12x - 8y = 0
{6z - 12x = 0
{8y - 6z = 0
<=>
{x/2 = y/3
{z/4 = x/2
{y/3 = z/4
<=> x/2 = y/3 = z/4
Ta có \(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
\(\Rightarrow\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2x-4x\right)}{9}=\dfrac{2\left(4y-3z\right)}{4}=\dfrac{12x-8y-12x+8y-6z}{29}\)
Do đó:
\(\dfrac{3x-2y}{4}=0\Rightarrow3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\left(1\right)\)
\(\dfrac{2z-4x}{3}=0\Rightarrow2z=4x\Rightarrow\dfrac{x}{2}=\dfrac{z}{4}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\). Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\Rightarrow x=4;y=6;z=8\)
Theo đề bài ta có:
43x−2y=32z−4x=24y−3z43x−2y=32z−4x=24y−3z
⇒⇒4(2z-4x) = 3(3x-2y)
3(4y-3z) = 2(2z-4x)
Ta có:
4(2z-4x) = 3(3x-2y)⇒⇒8z-16x = 9x-6y⇒y=25x−8z6⇒y=25x−8z6 (1)
32z−4x=24y−3z⇒3(4y−3z)=2(2z−4x)
HT ( mặc dù hơi rối ) nhưng cố nhìn nhé :))