Cho tam giác ABN cân ở A lấy E\(\in\)AN. Trên tia AN lấy C sao cho CE=AN. Gọi G và H thứ tự là trung điểm của BC và AE. Chứng minh GH song song với đường phân giác của góc BAN.
BẠN NÀO BIẾT LÀM CHỈ MÌNH GẤP NHÁ!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2
gọi E là trung điểm của KB
Vì tam giác CKB có BM=MC ; BE=EK
=>EM//KC
Vì tam giác ENM có AN=AM ; KA//EM
=>EK=KN
Vì KN=KE=EB=>NK=1/2KB
gọi AD là tia phân giác \(\widehat{BAN}\)
\(\Delta BAN\)cân tại A có AD là tia phân giác nên cũng là đường trung tuyến \(\Rightarrow BD=DN\)
Mặt khác : BP = PC
Xét \(\Delta BNC\)có BD = DN ; BP = PC nên DP là đường trung bình
\(\Rightarrow DP//NC\)và \(DP=\frac{1}{2}NC\)
Mà AN = EC hay AE + EN = EN + NC \(\Rightarrow AE=NC\)
\(\Rightarrow DP=\frac{1}{2}AE\)hay \(DP=AQ\)( do AQ = QE ) ( 1 )
Ta có : \(DP//NC\)hay \(DP//AQ\) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra AQPD là hình bình hành \(\Rightarrow PQ//AD\)
a: Xét ΔFBC vuông tại F và ΔECB vuông tại E có
BC chung
\(\widehat{FBC}=\widehat{ECB}\)
DO đó: ΔFBC=ΔECB
Suy ra: FB=EC
b: Ta có: AF+FB=AB
AE+EC=AC
mà BF=CE
và AB=AC
nên AF=AE
Xét ΔABC có AF/AB=AE/AC
nên FE//BC
bạn vô đây coi bài nào thích hớp thì xem Cho tam giác ABC. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Gọi H là chân đường vuông góc kể từ B đến AD, K là chân đường vuông góc kẻ từ C đến AE a) Chứng minh rằng HK song song với DE b) Tính HK, biết chu vi tam giác ABC bằng 10 cm Bài 2 Cho tam giác ABC, đường trung tuyến AM. Trên tia đối của tia AM lấy điểm N sao cho AN = AM. Gọi K là giao điểm của CA và NB. Chứng minh NK = 1/2 KB... Xem thêm - Tìm với Google