Có hay không 3 số nguyên lẻ a,b,c thỏa mãn a2 +b2-c2=20002
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)
Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)
Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)
Cộng vế:
\(P\ge\dfrac{a+b+c}{3}=673\)
Dấu "=" xảy ra khi \(a=b=c=673\)
Trước hết, với \(a+b+c=1\) ta có:
\(a^2+b^2+c^2=\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)
\(=\left(a^3+ab^2\right)+\left(b^3+bc^2\right)+\left(c^3+ca^2\right)+a^2b+b^2c+c^2a\)
\(\ge2a^2b+2b^2c+2c^2a+a^2b+b^2c+c^2a\)
Hay \(a^2+b^2+c^2\ge3\left(a^2b+b^2c+c^2a\right)\)
Từ đó:
\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}=\dfrac{a^4}{a^2b}+\dfrac{b^4}{b^2c}+\dfrac{c^4}{c^2a}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)
\(\ge\dfrac{3\left(a^2b+b^2c+c^2a\right)\left(a^2+b^2+c^2\right)}{a^2b+b^2c+c^2a}=3\left(a^2+b^2+c^2\right)\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Lời giải:
Ta thấy:
$(ab+cd)(ac+bd)=ad(c^2+b^2)+bc(a^2+d^2)$
$=(ad+bc)t$
Mà:
$2(t-ab-cd)=(a-b)^2+(c-d)^2>0$ nên $t> ab+cd$
Tương tự: $t> ac+bd$
Kết hợp $(ab+cd)(ac+bd)=(ad+bc)t$ nên:
$ab+cd> ad+bc, ac+bd> ad+bc$
Nếu $ab+cd, ac+bd$ đều thuộc $P$. Do $ad+bc$ là ước của $ab+cd$ hoặc $ac+bd$. Điều này vô lý
Do đó ta có đpcm.
\(\)Ta có: \(a+b+c=0 \Rightarrow b+c=-a \Rightarrow (b+c)^2=(-a)^2 \Leftrightarrow b^2+c^2+2bc=a^2 \Leftrightarrow a^2-b^2-c^2=2bc\)
Tương tự: \(b^2-c^2-a^2=2ca;c^2-a^2-b^2=2ab\)
\(P=...=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)
----
Bổ đề \(a+b+c=0 \Leftrightarrow a^3+b^3+c^3\)
Ở đây ta c/m chiều thuận:
Với \(a+b+c=0 \Leftrightarrow a+b=-c \Rightarrow (a+b)^3=(-c)^3 \Leftrightarrow a^3+b^3+3ab(a+b)=-c^3 \Leftrightarrow a^3+b^3+c^3=3abc(QED)\)
Ta có:
P = a + b + c ≤ a + b + a + b = 2(a + b) ≤ 2(-1) = -2
Ta cũng có:
P = a + b + c ≤ a + b + c - 2abc ≥ a + b + c - 2(-1)(-1)(-1) = -3
Vậy GTNN của P = -3 và GTLN của P = -2.
Ta có: a + b + c = 0
\(\Rightarrow\) (a + b + c)2 = 0
\(\Leftrightarrow\) a2 + b2 + c2 + 2ab + 2bc + 2ac = 0
\(\Leftrightarrow\) 2009 + 2(ab + bc + ac) = 0
\(\Leftrightarrow\) ab + bc + ac = \(\dfrac{-2009}{2}\)
\(\Leftrightarrow\) (ab + bc + ac)2 = \(\left(\dfrac{-2009}{2}\right)^2\)
\(\Leftrightarrow\) a2b2 + b2c2 + a2c2 + 2abc(a + b + c) = \(\left(\dfrac{-2009}{2}\right)^2\)
\(\Leftrightarrow\) a2b2 + b2c2 + c2a2 = \(\left(\dfrac{-2009}{2}\right)^2\) (Vì a + b + c = 0)
Lại có: a2 + b2 + c2 = 2009
\(\Rightarrow\) (a2 + b2 + c2)2 = 20092
\(\Leftrightarrow\) a4 + b4 + c4 + 2(a2b2 + b2c2 + c2a2) = 20092
\(\Leftrightarrow\) a4 + b4 + c4 + 2.\(\dfrac{2009^2}{4}\) = 20092
\(\Leftrightarrow\) a4 + b4 + c4 = 20092 - \(\dfrac{2009^2}{2}\) = 2018040,5
Chúc bn học tốt!
Lời giải:
Áp dụng BĐT Cô-si:
$\frac{a^2}{2}+8b^2\geq 2\sqrt{\frac{a^2}{2}.8b^2}=4ab$
$\frac{a^2}{2}+8c^2\geq 2\sqrt{\frac{a^2}{2}.8c^2}=4ac$
$2(b^2+c^2)\geq 2.2\sqrt{b^2c^2}=4bc$
Cộng các BĐT trên theo vế và thu gọn ta được:
$a^2+10(b^2+c^2)\geq 4(ab+bc+ac)=4$
Ta có đpcm.
a^2 + b^2 - c^2 = 2000^2
<=> b^2 - c^2 = 2000^2 - a^2
<=> (b + c)(b - c) = (2000 - a)(2000 + a)
Vì b + c > b - c ; 2000 + a > 2000 - a
=> b + c = 2000 + a ; b - c = 2000 - a
Xét b + c = 2000 + a <=> b + c - a = 2000
Xét b - c = 2000 - a <=> b - c + a = 2000
=> b + c - a = b - c + a
<=> -2a = -2c <=> a = c
Thay a = c vào đề bài, được b^2 = 2000^2 => b = 2000 hoặc -2000 (loại cả hai vì b phải lẻ)
Vậy không có 3 số lẻ a; b; c sao cho thỏa mãn đề bài
Vì a, b, c là số lẻ => a2, b2, c2 là 3 số lẻ.
Vế trái lẻ, vế phải chẵn => Không tồn tại 3 số nguyên thỏa điều kiện.