K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2023

 

Ta có:

P = a + b + c a + b + a + b = 2(a + b) 2(-1) = -2

Ta cũng có:

P = a + b + c a + b + c - 2abc a + b + c - 2(-1)(-1)(-1) = -3

Vậy GTNN của P = -3 và GTLN của P = -2.

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Lời giải:

Do $b\leq c; a^2\geq 0$ nên $a^2(b-c)\leq 0$

$\Rightarrow Q\leq b^2(c-b)+c^2(1-c)$

Áp dụng BĐT AM-GM:

\(b^2(c-b)=4.\frac{b}{2}.\frac{b}{2}(c-b)\leq 4\left(\frac{\frac{b}{2}+\frac{b}{2}+c-b}{3}\right)^3=\frac{4}{27}c^3\)

\(\Rightarrow Q\leq c^2-\frac{23}{27}c^3=c^2(1-\frac{23}{27}c)=(\frac{54}{23})^2.\frac{23}{54}c.\frac{23}{54}c(1-\frac{23}{27}c)\leq (\frac{54}{23})^2\left(\frac{\frac{23}{54}c+\frac{23}{54}c+1-\frac{23}{27}c}{3}\right)^3=\frac{108}{529}\)

Vậy $Q_{max}=\frac{108}{529}$

Giá trị này đạt tại $(a,b,c)=(0,\frac{12}{23}, \frac{18}{23})$

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Lời giải:

Do $b\leq c; a^2\geq 0$ nên $a^2(b-c)\leq 0$

$\Rightarrow Q\leq b^2(c-b)+c^2(1-c)$

Áp dụng BĐT AM-GM:

\(b^2(c-b)=4.\frac{b}{2}.\frac{b}{2}(c-b)\leq 4\left(\frac{\frac{b}{2}+\frac{b}{2}+c-b}{3}\right)^3=\frac{4}{27}c^3\)

\(\Rightarrow Q\leq c^2-\frac{23}{27}c^3=c^2(1-\frac{23}{27}c)=(\frac{54}{23})^2.\frac{23}{54}c.\frac{23}{54}c(1-\frac{23}{27}c)\leq (\frac{54}{23})^2\left(\frac{\frac{23}{54}c+\frac{23}{54}c+1-\frac{23}{27}c}{3}\right)^3=\frac{108}{529}\)

Vậy $Q_{max}=\frac{108}{529}$

Giá trị này đạt tại $(a,b,c)=(0,\frac{12}{23}, \frac{18}{23})$

NV
8 tháng 12 2021

Do \(a^2+b^2+c^2=1\Rightarrow0\le a;b;c\le1\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\\b^{2011}\le b\\c^{2011}\le c\end{matrix}\right.\)

\(\Rightarrow T\le a+b+c-ab-bc-ca=\left(a-1\right)\left(b-1\right)\left(c-1\right)+1-abc\le1-abc\le1\)

\(T_{max}=1\) khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị

NV
26 tháng 1 2022

\(P=\dfrac{a^2+b^2+c^2}{ab+bc+ca}\ge\dfrac{ab+bc+ca}{ab+bc+ca}=1\)

\(P_{min}=1\) khi \(a=b=c=1\)

\(P=\dfrac{\left(a+b+c\right)^2-2\left(ab+bc+ca\right)}{ab+bc+ca}=\dfrac{9}{ab+bc+ca}-2\)

Do \(a;b\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab\ge a+b-1=2-c\)

\(\Rightarrow ab+c\left(a+b\right)\ge2-c+c\left(3-c\right)=-c^2+2c+2=c\left(2-c\right)+2\ge2\)

\(\Rightarrow P\le\dfrac{9}{2}-2=\dfrac{5}{2}\)

\(P_{max}=\dfrac{5}{2}\) khi \(\left(a;b;c\right)=\left(1;2;0\right);\left(2;1;0\right)\)

NV
13 tháng 8 2021

Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)

Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)

Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)

Cộng vế:

\(P\ge\dfrac{a+b+c}{3}=673\)

Dấu "=" xảy ra khi \(a=b=c=673\)

11 tháng 6 2023

\(\)Ta có: \(a+b+c=0 \Rightarrow b+c=-a \Rightarrow (b+c)^2=(-a)^2 \Leftrightarrow b^2+c^2+2bc=a^2 \Leftrightarrow a^2-b^2-c^2=2bc\)

Tương tự: \(b^2-c^2-a^2=2ca;c^2-a^2-b^2=2ab\)

\(P=...=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)

----
Bổ đề \(a+b+c=0 \Leftrightarrow a^3+b^3+c^3\)

Ở đây ta c/m chiều thuận:
Với \(a+b+c=0 \Leftrightarrow a+b=-c \Rightarrow (a+b)^3=(-c)^3 \Leftrightarrow a^3+b^3+3ab(a+b)=-c^3 \Leftrightarrow a^3+b^3+c^3=3abc(QED)\)

NV
31 tháng 1 2021

\(P\le a^2+b^2+c^2+3\sqrt{3\left(a^2+b^2+c^2\right)}=12\)

\(P_{max}=12\) khi \(a=b=c=1\)

Lại có: \(\left(a+b+c\right)^2=3+2\left(ab+bc+ca\right)\ge3\Rightarrow a+b+c\ge\sqrt{3}\)

\(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\)

\(\Rightarrow\sqrt{3}\le a+b+c\le3\)

\(P=\dfrac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}+3\left(a+b+c\right)\)

\(P=\dfrac{1}{2}\left(a+b+c\right)^2+3\left(a+b+c\right)-\dfrac{3}{2}\)

Đặt \(a+b+c=x\Rightarrow\sqrt{3}\le x\le3\)

\(P=\dfrac{1}{2}x^2+3x-\dfrac{3}{2}=\dfrac{1}{2}\left(x-\sqrt{3}\right)\left(x+6+\sqrt{3}\right)+3\sqrt{3}\ge3\sqrt{3}\)

\(P_{min}=3\sqrt{3}\) khi \(x=\sqrt{3}\) hay \(\left(a;b;c\right)=\left(0;0;\sqrt{3}\right)\) và hoán vị

22 tháng 6 2021

thế bạn bt hok

AH
Akai Haruma
Giáo viên
25 tháng 11 2023

Đề là tìm GTNN hay GTLN hả bạn?