K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>CE\(\perp\)AB tại E

Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

=>BD\(\perp\)AC tại D

Xét ΔABC có

BD,CE là các đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại F

2: Xét ΔFBH vuông tại F và ΔFAC vuông tại F có

\(\widehat{FBH}=\widehat{FAC}\left(=90^0-\widehat{ACF}\right)\)

Do đó: ΔFBH~ΔFAC

=>\(\dfrac{FB}{FA}=\dfrac{FH}{FC}\)

=>\(FB\cdot FC=FA\cdot FH\)

3: Xét tứ giác AEHD có

\(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)

nên AEHD là tứ giác nội tiếp đường tròn đường kính AH

Tâm I là trung điểm của AH

 

NV
25 tháng 1

a.

Do MA là tiếp tuyến tại A \(\Rightarrow MA\perp OA\Rightarrow\widehat{MAO}=90^0\)

Xét hai tam giác OMA và OMB có:

\(\left\{{}\begin{matrix}OA=OB=R\\MA=MB\left(gt\right)\\OM\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OMA=\Delta OMB\left(c.c.c\right)\)

\(\Rightarrow\widehat{MBO}=\widehat{MAO}=90^0\)

\(\Rightarrow MB\perp OB\Rightarrow MB\) là tiếp tuyến

b.

Gọi H là giao điểm AB và OM

Ta có: \(\left\{{}\begin{matrix}OA=OB=R\\MA=MB\left(gt\right)\end{matrix}\right.\) \(\Rightarrow OM\) là trung trực AB

\(\Rightarrow OM\perp AB\) tại H  đồng thời \(HA=HB=\dfrac{AB}{2}\)

Trong tam giác vuông OMA: \(cos\widehat{AOM}=\dfrac{OA}{OM}=\dfrac{2}{2R}=\dfrac{1}{2}\Rightarrow\widehat{AOM}=60^0\)

\(\Rightarrow\widehat{AMO}=90^0-\widehat{AOM}=30^0\)

\(\Rightarrow\widehat{AMB}=2\widehat{AMO}=60^0\)

\(\Rightarrow\Delta AMB\) đều (tam giác cân có 1 góc bằng 60 độ)

Trong tam giác vuông OAH:

\(AH=OA.sin\widehat{AOM}=R.sin60^0=\dfrac{R\sqrt{3}}{3}\)

\(\Rightarrow AB=2AH=R\sqrt{3}\)

\(OH=OA.cos\widehat{AOM}=R.cos30^0=\dfrac{R}{2}\)

\(\Rightarrow HM=OM-OH=\dfrac{3R}{2}\)

\(\Rightarrow S_{ABM}=\dfrac{1}{2}HM.AB=\dfrac{3R^2\sqrt{3}}{4}\)

c.

BE là đường kính \(\Rightarrow\widehat{BAE}\) là góc nt chắn nửa đường tròn

\(\Rightarrow\widehat{BAE}=90^0\Rightarrow AB\perp AE\)

Mà \(AB\perp OM\) (theo cm câu b)

\(\Rightarrow AE||OM\) (cùng vuông góc AB)

NV
25 tháng 1

loading...

5 tháng 9 2021

???

7 tháng 1 2023

`b)2x^2-5x+2=0`

`<=>2x^2-4x-x+2=0`

`<=>(x-2)(2x-1)=0`

`<=>[(x=2),(x=1/2):}`

`d)12x^2-53x+20=0`

`<=>12x^2-48x-5x+20=0`

`<=>(x-4)(12x-5)=0`

`<=>[(x=4),(x=5/12):}`

7 tháng 1 2023

\(b,2x^2-5x+2=0\\ \Leftrightarrow2x^2-4x-x+2=0\\ \Leftrightarrow2x\left(x-2\right)-\left(x-2\right)=0\\ \Leftrightarrow\left(2x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\\ d,12x^2-53x+20=0\\ \Leftrightarrow12x^2-48x-5x+20=0\\ \Leftrightarrow12x\left(x-4\right)-5\left(x-4\right)=0\\ \Leftrightarrow\left(12x-5\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}12x-5=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{12}\\x=4\end{matrix}\right.\)

Câu 3: 

a: Ta có: \(2x\left(3x-1\right)-\left(x-3\right)\left(6x+2\right)\)

\(=6x^2-2x-6x^2-2x+18x+6\)

=14x+6

b: Ta có: \(2x\left(x+7\right)-3x\left(x+1\right)\)

\(=2x^2+14x-3x^2-3x\)

\(=-x^2+11x\)

Câu 2: 

a: Ta có: \(\left(-8x^5+12x^3-16x^2\right):4x^2\)

\(=-8x^5:4x^2+12x^3:4x^2-16x^2:4x^2\)

\(=-2x^3+3x-4\)

b: Ta có: \(\left(12x^3y^3-18x^2y+9xy^2\right):6xy\)

\(=12x^3y^3:6xy-18x^2y:6xy+9xy^2:6xy\)

\(=2x^2y^2-3x+\dfrac{3}{2}y\)

c: Ta có: \(\dfrac{x^3-11x^2+27x-9}{x-3}\)

\(=\dfrac{x^3-3x^2-8x^2+24x+3x-9}{x-3}\)

\(=x^2-8x+3\)

d: Ta có: \(\dfrac{6x^4-13x^3+7x^2-x-5}{3x+1}\)

\(=\dfrac{6x^4+2x^3-15x^3-5x^2+12x^2+4x-5x-\dfrac{5}{3}-\dfrac{10}{3}}{3x+1}\)

\(=2x^3-5x^2+4x-\dfrac{5}{3}-\dfrac{\dfrac{10}{3}}{3x+1}\)

 

11 tháng 10 2019

bn vào link này tham khảo nha:https://h7.net/hoi-dap/ngu-van-6/viet-doan-van-ta-bac-ho-trong-bai-dem-nay-bac-khong-ngu-faq429278.html

11 tháng 10 2019

Tham khảo:

https://olm.vn/hoi-dap/detail/232133064289.html

~Std well~

#Twice