K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2021

\(\Rightarrow\left(n^2+n+2n+2-1\right)⋮\left(n+1\right)\\ \Rightarrow\left[n\left(n+1\right)+2\left(n+1\right)-1\right]⋮\left(n+1\right)\\ \Rightarrow n+1\inƯ\left(1\right)=\left\{1\right\}\\ \Rightarrow n=0\)

30 tháng 12 2022

\(3^{n+2}-2^{n+4}+3^n+2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+4}-2^n\right)=\left(3^n.9+3^n\right)-\left(2^n.16-2^n\right)=3^n.\left(9+1\right)-2^n.\left(16-1\right)=3^n.10-2^n.15=3^{n-1}.3.10-2^{n-1}.2.15=3^{n-1}.30-2^{n-1}.30=30.\left(3^{n-1}-2^{n-1}\right)\)

Vì \(30⋮30=>30.\left(3^{n-1}-2^{n-1}\right)⋮30=>3^{n+2}-2^{n+4}+3^n+2^n⋮30\)

10 tháng 9 2018

a) Ta có: ( 3 n   -   1 ) 2  - 4 = (3n - 1 - 2)(3n - 1 + 2) = 3(n - l)(3n + 1).

Do 3(n - 1)(3n + l) chia hết cho 3 với mọi số tự nhiên n, nên  ( 3 n   -   1 ) 2  - 4 chia hết cho 3 với mọi số tự nhiên n;

b) Ta có: 100 - ( 7 n   +   3 ) 2  =(7 - 7n)(13 – 7n) = 7(1 - n)(13 -7n) chia hết cho 7 với n là số tự nhiên.

26 tháng 1 2021

1+2+3+4+5+6+7+8+9=133456 hi hi

7 tháng 11 2021

đào xuân anh sao mày gi sai hả

23 tháng 10 2015

- nếu n là số lẻ ta có (n+1) là số chẵn và (3n+2) là số lẻ nên tích (n+1). (3n+2) là một số chẵn (a) chia hết cho 2

- nếu n là số chẵn ta có (n+1) là số lẻ và (3n+2) là số chẵn nên tích (n+1). (3n+2) là một số chẵn (b) chia hết cho 2

Từ (a) và (b) thì tích (n+1).(3n+2) chia hết cho 2 với mọi N là số tự nhiên

vì trong 1 tích chỉ cần 1 số nhiên chia hết thì cá tích chia hết 

vì có (3n + 2) nên cả tích đó chia hết cho 2

3 tháng 2 2021

a/ \(2^{225}=\left(2^3\right)^{75}=8^{75}\)

\(3^{151}>3^{150}=\left(3^2\right)^{75}=9^{75}\)

Mà \(8^{75}< 9^{75}\)

=> \(2^{225}< 3^{150}< 3^{151}\)

b/ Xét n là số lẻ

=> n + 1 chẵn

=> n + 1 ⋮ 2

=> (n+1)(3n+2) ⋮2

Xét n là số chẵn

=> 3n chẵn

=> 3n+2 chẵn

=> (n+1)(3n+2) ⋮2

Do đó A = (n+1)(3n+2) chia hết cho 2 với mọi số tự nhiên n 

3 tháng 7 2016

\(7^{4n}-1=\left(.....1\right)-1=....0\) luôn chia hết cho 5

Vậy \(7^{4n}-1\) chia hết cho 5 với mọi số tự nhiên n

AH
Akai Haruma
Giáo viên
10 tháng 2 2023

Lời giải:

Ta thấy $3n+13-(n+10)=2n+3$ lẻ nên $3n+13, n+10$ là 2 số khác tính chẵn lẻ. 

Nghĩa là luôn tồn tại 1 số chẵn và 1 số lẻ trong 2 số đã cho.

$\Rightarrow (n+10)(3n+13)\vdots 2$ với mọi số tự nhiên $n$