K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2015

Khó quá !!!

26 tháng 1 2015

gợi ý có 4 đáp án:

A. 8,6,4

B.6,4,3

C.8,4,6

D.4,6,3

6 tháng 9 2021

gọi 3 cạnh tam giác là a,b,c va 3 chiều cao tương ứng là x,y,z

theo bài ra thì a/2=b/3=c/4=k    ( k>0)

suy ra a=2k; b=3k; c=4k

lại có ax=by=cz= diện tích tam giác/2

thay vào rút gọn k, ta có:

2x=3y=4z

=> 2x/12=3y/12=4z/12

=>x/6=y/4=z/3

vậy 3 đường cao tỉ lệ với 6,4,3

30 tháng 5 2017

Trong câu hỏi tương tự có đấy bạn.

30 tháng 5 2017

gọi 2 Cạnh lần lượt là 2x;3x;4x

đường cao tương tứng lần lượt là : \(h_1=\frac{2S}{2x};h_2=\frac{2S}{3x};h_3=\frac{2S}{4x}\)VỚI S LÀ DIỆN TÍCH TAM GIÁC

CÓ tỉ số :\(h_1:h_2:h_3=\frac{2S}{2x}:\frac{2S}{3x}:\frac{2S}{4x}=1:\frac{2}{3}:\frac{1}{2}\)

Gọi độ dài 3 cạnh đó là: a,b,c có: a : b : c =2 : 3 : 4

Đặt \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=k\left(k>0\right)\)

=>\(a=2k;b=3k;c=4k\)

Gọi chiều cao tương ứng với 3 cạnh là: ha;hb;hc

Ta có: \(\dfrac{1}{2}\cdot a\cdot h_a=\dfrac{1}{2}b\cdot h_b=\dfrac{1}{2}c\cdot h_c=\dfrac{1}{2}2k\cdot h_a=\dfrac{1}{2}3k\cdot h_b=\dfrac{1}{2}4k\cdot h_c\Leftrightarrow2h_a=3h_b=4h_c\) =>\(\dfrac{\dfrac{h_a}{1}}{2}=\dfrac{h_b}{\dfrac{1}{3}}=\dfrac{h_c}{\dfrac{1}{4}}\)

Vậy chiều cao tương ứng với 3 cạnh tam là: \(\dfrac{1}{2};\dfrac{1}{3};\dfrac{1}{4}\)

24 tháng 7 2023

Gọi độ dài 3 cạnh đó là: a,b,c có: a : b : c =2 : 3 : 4

Đặt �2=�3=�4=�(�>0)

=>�=2�;�=3�;�=4�

Gọi chiều cao tương ứng với 3 cạnh là: ha;hb;hc

Ta có: 12⋅�⋅ℎ�=12�⋅ℎ�=12�⋅ℎ�=122�⋅ℎ�=123�⋅ℎ�=124�⋅ℎ�⇔2ℎ�=3ℎ�=4ℎ� =>ℎ�12=ℎ�13=ℎ�14

Vậy chiều cao tương ứng với 3 cạnh tam là: 12;13;14
 

Gọi độ dài ba đường cao lần lượt là a,b,c

Độ dài 3 cạnh tỉ lệ với 2;3;4

=>2a=3b=4c

=>a/6=b/4=c/3

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{a+b+c}{6+4+3}=\dfrac{13}{13}=1\)

=>a=6; b=4; c=3

24 tháng 10 2016

Gọi S là diện tích của hình tam giác

\(h_1;h_2;h_3\) lần lượt là các chiều cao ứng với các cạnh tam giác \(a_1;a_2;a_3\)

Ta có:

\(S=\frac{h.a}{2}\Rightarrow\frac{h_1.a_1}{2}=\frac{h_2.a_2}{2}=\frac{h_3.a_3}{2}\Rightarrow h_1.a_1=h_2.a_2=h_3.a_3\Rightarrow\frac{a_1}{\frac{1}{h_1}}=\frac{a_2}{\frac{1}{h_2}}=\frac{a_3}{\frac{1}{h_3}}\left(1\right)\)

Đồng thời theo giả thiết thì: \(\frac{a_1}{2}=\frac{a_2}{3}=\frac{a_3}{4}\left(2\right)\)

\(\Rightarrow a_1:a_2:a_3=\frac{1}{h_1}:\frac{1}{h_2}:\frac{1}{h_3}=2:3:4\Rightarrow h_1:h_2:h_3=6:4:3\)

20 tháng 5 2018

gọi độ dài 3 cạnh của tam giác là a,b,c . 3 chiều cao tương ứng là x,y,z , diện tích của tam giác là S

Ta có : a = 2S/x, b = 2S/y , c = 2S/z

Do đó : từ a/2 = b/3 = c/4 

\(\Rightarrow\)\(\frac{2S}{\frac{x}{2}}=\frac{2S}{\frac{y}{3}}=\frac{2S}{\frac{z}{4}}\)\(\Rightarrow\)\(\frac{1}{2x}=\frac{1}{3y}=\frac{1}{4z}\)\(\Rightarrow\)\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)

Vậy chiều cao tương ứng tỉ lệ với 6,4,3

20 tháng 5 2018

Gọi độ dài 3 cạnh là a,b ,c ; 3 chiều cao tương ứng là x , y , z ; diện tích là S  

\(a=\frac{2S}{X}\)

\(b=\frac{2S}{y}\)

\(c=\frac{2S}{z}\)

\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)

\(\Rightarrow\frac{2S}{2x}=\frac{2S}{3y}=\frac{2S}{4z}\)

\(\Rightarrow2x=3y=4z\)

\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)

Vậy x ; y ;z tỉ lệ với 6 , 4 ,3 hay 3 chiều cao tương ứng của 3 cạnh đó tỉ lệ với 6;4;3