c, chứng minh rằng đường tròn đường kính cd tiếp xúc với 3 đường thẳng ab, ad và bc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I là trung điểm của BC
Ta có: IB = IC = (1/2).BC = (1/2).13 = 6,5 (cm) (1)
Kẻ IH ⊥ AD. Khi đó HI là đường trung bình của hình thang ABCD.
Từ (1) và (2) suy ra : IB = IH = R
Vậy đường tròn (I ; BC/2 ) tiếp xúc với đường thẳng AD
Hs lớp 12 không biết lên mạng tra xem có không rồi mới hỏi à.-.
Trên mạng nhiều khi không giải như cách chúng ta học đâu bạn, liệu thầy cô có biết và xem qua đáp án trên mạng không nhỉ? Không phải là có biết lên mạng tra hay không mà đã tra và muốn có 1 cách giải khác thôi ạ!
bn tựu vẽ hk nha
a, dễ cm tứ giác ABCD là hình thang
ta có AD//MO//CB(cùng vuông góc vs DC)
A0=B0
từ đây suy ra DM=MC
B, TỪ M KẺ MH VUÔNG GÓC VS AB
TA CÓ GÓC DAM=GÓC AMO( do AD//MO) (1)
LẠI CÓ GÓC AMO=GÓC MAO( do MO=AO) (2)
TỪ (1)(2) SUY RA GÓC DAM=GÓC MAO
LẠI CÓ GÓC D=GÓC MHA=90
SUY RA TAM GIAC DMA=TAM GIAC HMA
SUY RA AD=AH
tự BC=HB
TỪ ĐÂY SUY RA AD+CB=AH+BH=AB KO ĐỔI
C, TA CÓ MH=DM=MC(CMT)
LẠI CÓ MHVUOONG GÓC VS AB
SUY RA DƯỜNG TRÒN CD TX VS AB
D, TRONG HT VUÔNG ABCD CÓ DC<=AB
SUY RA SABCD=\(\frac{\left(AD+CB\right).DC}{2}=\frac{AB.CD}{2}< =\frac{AB^2}{2}\)
DẤU = XẢY RA KHI M NẰM CHÍNH GIỬA CUNG AB
a. Kẻ BE ⊥ CD
Suy ra tứ giác ABED là hình chữ nhật
Ta có: AD = BE
AB = DE = 4 (cm)
Suy ra: CE = CD – DE = 9 – 4 = 5 (cm)
Áp dụng định lí Pitago vào tam giác vuông BCE ta có :
BC2 = BE2 + CE2
Suy ra : BE2 = BC2 – CE2 = 132 – 52 = 144
BE = 12 (cm)
Vậy: AD = 12 (cm)
b. Gọi I là trung điểm của BC
Ta có: IB = IC = (1/2).BC = (1/2).13 = 6,5 (cm) (1)
Kẻ IH ⊥ AD. Khi đó HI là đường trung bình của hình thang ABCD.
Từ (1) và (2) suy ra : IB = IH = R
Vậy đường tròn (I ; BC/2 ) tiếp xúc với đường thẳng AD
a, Vẽ tiếp tuyến tại C cắt đường AB ở P. Phân giác C P B ^ cắt OC ở I. Vẽ đường tròn tâm I bán kính IC, đó là đường tròn cần tìm
b, Do A C B ^ = 90 0 nên M C N ^ = 90 0
=> MN là đường kính của (I) => ĐPCM
c, Chứng minh được MN//AB nên ID ^ MN => M D ⏜ = N D ⏜ hay CD là tia phân giác A C B ^ => Đpcm