Bài 1:
cho tam giác ABC có AB=20cm,AC=48cm,BC=52cm
b)Kẻ AH vuông BC.Tính AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo định lý Pi-ta-go
Ta có : \(\sqrt{20^2+48^2}\)=52
Vậy tam giác vuông tại A.
b
A. áp dụng định lý pytago trong tam giác abc ta có:
(ab2+ac2)=bc2
=>202+482=522(hợp lí)
=>tam giác abc vuông tại A
B. ta có BH=CH=52:2=26
Xét tam giác ahc có :
CH2+AH2=AC2
=>AH2=AC2-CH2
=>AH2=482-262
=>AH2=1628
=>AH=40.34.....
a/ ta có BC2=522=2704
AB2+AC2=20^2+48^2=400+2304=2704
vì 2704=2704 nên BC2=AB2+AC2 hay tam giác ABC vuông tại A
Ta có AB^2+AC^2=20^2+48^2=2704
BC^2=52^2=2704
=> Tam giác ABC vuông tại A(định lí pytago đảo)
b, diện tích tg ABC =1/2AB.AC=1/2.20.48=480
StgABC=1/2AH.BC
<=> 480=1/2AH.52
=> AH=18,46
hnay ma nhập nên bài hình nhiều ==
a, Theo định lí Py ta go
Ta cs : \(BC^2=AB^2+AC^2\)
\(52^2=20^2+48^2\)
\(52^2=2704\)
\(52=\sqrt{2704}=52\)
Vậy tam giác ABC vuông tại A ( theo định lí Py ta go đảo )
A B C 52cm 20cm 48cm H
Vì H nằm giữa B và C
=> HC = HB = 52 . 1/2 = 26cm
Rồi AD định lí Py ta go
a. Áp dụng định lí Py-ta-go đảo
522=202+482
=> 2704 = 400 + 2304
=> 2704 = 2704
=> BC2=AB2+AC2
=> tam giác ABC vuông tại A
B H A C 20cm 52cm 48cm
a)
Ta có: BC2=52cm2 = 5704 (cm)
=> AC2+ AB2 =482+202=2304+400=2704 (cm)
=> BC2=AC2+AB2=2704(cm)
=> \(\Delta ABC\) là tam giác vuông ở A
đpcm.
b)
Diện tích tam giác ABC là:
48.20:2=480 (cm2)
Độ dài chiều cao AH là:
480.2:52 = 260/13 (cm)
Vậy.....
B A C H 20 48 52
a, Ta có : \(BC^2=52^2=2704\)
\(AB^2+AC^2=20^2+48^2=400+2304=2704=52^2\)
Vậy : \(BC^2=AB^2+AC^2\)
Tam giác ABC vuông ở A
b, Ta có : \(S_{ABC}=\frac{1}{2}AB\cdot AC=\frac{1}{2}\cdot20\cdot48=10\cdot48=480\left(cm^2\right)\)
Mặt khác \(S_{ABC}=\frac{1}{2}AH\cdot BC,AH=\frac{2S_{ABC}}{52}=\frac{2\cdot480}{52}\approx18,5\left(cm\right)\)
Phần b bạn dưới làm sai
Bài 3 :
\(BC=HC+HB=16+9=25\left(cm\right)\)
\(BC^2=AB^2+AC^2\Rightarrow AB^2=BC^2-AC^2=25^2-20^2=625-400=225=15^2\)
\(\Rightarrow AB=15\left(cm\right)\)
\(AH^2=HC.HB=16.9=4^2.3^2\Rightarrow AH=3.4=12\left(cm\right)\)
Bài 6:
\(AB=AC=4\left(cm\right)\) (Δ ABC cân tại A)
\(BH=HC=2\left(cm\right)\) (Ah là đường cao, đường trung tuyến cân Δ ABC)
\(BC=BH+HC=2+2=4\left(cm\right)\)
Chu vi Δ ABC :
\(4+4+4=12\left(cm\right)\)
240/13