Cho đa thức f(x) = ax^2 +bx +c .Trong đó p=abc la một số nguyên tố .CMR đa thức f(x) không có nghiệm nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo vi ét
x1.x2=a/c
suy ra 1.-1=a/c
suy ra a/c=-1
vì -1<0 nên a,c trái dấu
Ta có:
\(f\left(1\right)=a+b+c\text{⋮7 }\)
\(f\left(2\right)=4a+2b+c⋮7\)
\(\Rightarrow f\left(2\right)-f\left(1\right)=3a+b⋮7\)
\(f\left(3\right)=9a+3b+c=3\left(3a+b\right)+c⋮7\)
Mà \(3a+b⋮7\)
\(\Rightarrow c⋮7\)
Mà \(a+b+c⋮7\)
\(\Rightarrow a+b⋮7\)
Mà \(4a+2b+c⋮7\)
\(\Rightarrow4a+2b=2\left(2a+b\right)⋮7\)
\(2\text{̸ ⋮̸7}\)
\(\Rightarrow2a+b⋮7\)
Mà \(a+b⋮7\)
\(\Rightarrow\left(2a+b\right)-\left(a+b\right)=a⋮7\)
Có \(a⋮7;c⋮7;a+b+c⋮7\)
\(\Rightarrow b⋮7\)
\(f\left(m\right)=am^2+bm+c\)
Như vậy \(\Rightarrow am^2⋮7;bm⋮7;c⋮7\)
\(\Rightarrow a.x^2+bx+c⋮7\)
Do đó với bất kỳ giá trị nào của m nguyên thì f(m)⋮7
a) Ta có:\(x.f\left(x+1\right)=\left(x+2\right).f\left(x\right)\)
+)Thay \(x=0\) ta có:\(2.f\left(0\right)=0\)\(\implies\) \(f\left(0\right)=0\)
Vậy đa thức \(f\left(x\right)\) có nghiệm là x=0 (1)
+)Thay \(x=-2\) ta có:\(-2.f\left(-1\right)=0\)\(\implies\) \(f\left(-1\right)=0\)
Vậy đa thức \(f\left(x\right)\) có nghiệm là x=-1 (2)
Từ (1),(2)
\(\implies\) đa thức \(f\left(x\right)\) có ít nhất hai nghiệm
b)Ta có:\(f\left(x\right)=ax^2+bx+c\)
+)Với x=0 \(\implies\) \(f\left(0\right)=a.0^2+b.0+c=c:2007\left(1\right)\)
+)Với x=1 \(\implies\) \(f\left(1\right)=a.1^2+b.1+c=a+b+c:2007\left(2\right)\)
+)Với x=-1 \(\implies\) \(f\left(-1\right)=a.\left(-1\right)^2-b.1+c=a-b+c:2007\left(3\right)\)
Từ (2);(3) cộng vế với vế ta được:
\(\implies\) \(f\left(1\right)+f\left(-1\right)=a+b+c+a-b+c\)
\(=2a+2c\)
\(=2.\left(a+c\right):2007\)
mà \(\left(2,2007\right)=1\)\(\implies\) \(a+c:2007\) \(\left(4\right)\)
Từ \(\left(1\right),\left(4\right)\) \(\implies\) \(a:2007\) \(\left(5\right)\)
Từ \(\left(4\right),\left(2\right)\) \(\implies\) \(b:2007\) \(\left(6\right)\)
Từ \(\left(1\right),\left(5\right),\left(6\right)\) \(\implies\) các hệ số a,b,c đều chia hết cho 2007\(\left(đpcm\right)\)