K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2016

thay 1 = \(\left(x^2+y^2\right)^2\) rồi nhaan chéo lên
cái ở dưới dùng tc dãy tỉ số = nhau

16 tháng 2 2016

câu trên thì mình hiểu rồi.nhưng phần dưới cậu có thể giải thích rõ hơn được ko

cảm ơn nhiều!!!

18 tháng 7 2016

10. a) 

\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\Leftrightarrow\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\)

\(\Leftrightarrow\left(a+b\right)\left(x^4+y^4\right)=ab\left(x^2+y^2\right)^2\Leftrightarrow\left(bx^2-ay^2\right)^2=0\Leftrightarrow bx^2=ay^2\)

b) Từ \(ay^2=bx^2\Rightarrow\frac{y^2}{b}=\frac{x^2}{a}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)

\(\Rightarrow\frac{x^{2008}}{a^{1004}}=\frac{1}{\left(a+b\right)^{1004}}\)\(\frac{y^{2008}}{b^{1004}}=\frac{1}{\left(a+b\right)^{1004}}\)

\(\Rightarrow\frac{x^{2008}}{a^{1004}}+\frac{y^{2008}}{b^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\)

18 tháng 7 2016

25. Ta có \(\left(ax+by+cz\right)^2=0\Leftrightarrow a^2x^2+b^2y^2+c^2z^2=-2\left(abxy+bcyz+acxz\right)\)

Xét mẫu số của P : \(bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2=bc\left(y^2-2yz+z^2\right)+ac\left(x^2-2xz+z^2\right)+ab\left(x^2-2xy+y^2\right)\)

\(=y^2bc-2bcyz+bcz^2+acx^2-2xzac+acz^2+abx^2-2abxy+aby^2\)

\(=y^2bc+bcz^2+acx^2+acz^2+abx^2+aby^2-2\left(abxy+xzac+bcyz\right)\)

\(=y^2bc+bcz^2+acx^2+acz^2+abx^2+aby^2+a^2x^2+b^2y^2+c^2z^2\)

\(=c\left(ax^2+by^2+cz^2\right)+b\left(ax^2+by^2+cz^2\right)+a\left(ax^2+by^2+cz^2\right)=\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)\)

\(\Rightarrow P=\frac{ax^2+by^2+cz^2}{\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)}=\frac{1}{a+b+c}=\frac{1}{2007}\)

8. \(\frac{x^3}{a^3}+\frac{y^3}{b^3}=\left(\frac{x}{a}+\frac{y}{b}\right)^3-3.\frac{xy}{ab}\left(\frac{x}{a}+\frac{y}{b}\right)=1^3-3.\left(-2\right).1=7\)

27 tháng 4 2020

Em vào câu hỏi tương tự tham khảo: 

a) Ta có: \(x^2+y^2=1\Leftrightarrow x^4+2x^2y^2+y^4=1\)

Khi đó: \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{x^4+2x^2y^2+y^4}{a+b}\)

<=> \(\left(a+b\right)\left(\frac{x^4}{a}+\frac{y^4}{b}\right)=x^4+2x^2y^2+y^4\)

<=> \(\frac{b}{a}x^4+\frac{a}{b}y^4=2x^2y^2\)

<=> \(\frac{x^4}{a^2}+\frac{y^4}{b^2}-\frac{2x^2y^2}{ab}=0\)

<=> \(\left(\frac{x^2}{a}-\frac{y^2}{b}\right)^2=0\)

a) \(\frac{x^2}{a}=\frac{y^2}{b}\Leftrightarrow bx^2=ay^2\)

b)  \(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)( dãy tỉ số bằng nhau)

Khi đó: \(\frac{x^{2008}}{a^{1004}}+\frac{y^{2008}}{b^{1004}}=2\frac{x^{2008}}{a^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\)

18 tháng 7 2016

Đặt  \(u=\frac{x}{a};\)  và  \(v=\frac{y}{b}\)  \(\Rightarrow\)  \(\hept{\begin{cases}u,v\in Z\\u+v=1\\uv=-2\end{cases}}\)

Khi đó, ta có:

\(u+v=1\)

nên  \(\left(u+v\right)^3=1\)  \(\Leftrightarrow\)  \(u^3+v^3+3uv\left(u+v\right)=1\)

Do đó,  \(u^3+v^3=1-3uv\left(u+v\right)=1+6=7\)

Vậy,  \(\frac{x^3}{a^3}+\frac{y^3}{b^3}=7\)

18 tháng 7 2016

\(ĐK:\)  \(a,b,c\ne0\)

Ta có: 

\(a+b+c=0\)

\(\Leftrightarrow\) \(a+b=-c\)

\(\Rightarrow\)  \(\left(a+b\right)^2=\left(-c\right)^2\)

\(\Leftrightarrow\)  \(a^2+b^2+2ab=c^2\)

nên    \(a^2+b^2-c^2=-2ab\)

Tương tự với vòng hoán vị  \(b\rightarrow c\rightarrow a\)  ta cũng suy ra được:

\(\hept{\begin{cases}b^2+c^2-a^2=-2bc\\c^2+a^2-b^2=-2ca\end{cases}}\)

Khi đó, biểu thức  \(P\)  được viết lại dưới dạng:

\(P=-\frac{1}{2bc}-\frac{1}{2ca}-\frac{1}{2ab}=-\frac{1}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=-\frac{1}{2}\left(\frac{a+b+c}{abc}\right)=0\) (do \(a,b,c\ne0\)  )

8 tháng 10 2017

Bài 2 : đã cm bên kia

Bài 1: :| 

we had điều này:

\(2=\frac{2014}{x}+\frac{2014}{y}+\frac{2014}{z}\)

\(\Leftrightarrow\frac{x-2014}{x}+\frac{y-2014}{y}+\frac{z-204}{z}=1\)

Xòng! bunyakovsky

P/s : Bệnh lười kinh niên tái phát nên ít khi ol sorry :<

28 tháng 5 2018

a) Từ đề bài \(\Rightarrow\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\)     \(\Leftrightarrow\frac{x^4b+y^4a}{ab}=\frac{\left(x^2+y^2\right)^2}{a+b}\)

\(\Leftrightarrow\left(x^4b+y^4a\right)\left(a+b\right)-ab\left(x^2+y^2\right)^2=0\)

\(\Leftrightarrow b^2x^4-2abx^2y^2+a^2y^4=0\)

\(\Leftrightarrow\left(bx^2-ay^2\right)^2=0\)       \(\Rightarrow bx^2=ay^2\) (ĐPCM)

b) Từ a \(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}\) Áp dụng DTSBN ta có : 

\(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}\) hay \(\frac{x^2}{a}=\frac{y^2}{b}=\frac{1}{a+b}\)

\(\Rightarrow\frac{x^{2018}}{a^{1004}}=\frac{y^{2018}}{b^{1004}}=\frac{1}{\left(a+b\right)^{1004}}\)    \(\Rightarrow\frac{x^{2018}}{a^{1004}}+\frac{y^{2018}}{b^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\) (ĐPCM)

22 tháng 12 2015

giải chi tiết hộ mk nhá

 

1. a) Tìm \(n\in N\)*, \(n2008\) sao cho \(2^{2008}+2^{2012}+2^{2013}+2^{2014}+2^{2016}+2^n\) là số chính phương b) tìm x,y > 0 thỏa mãn \(x^2+y^2=2\left(x+y\right)\left(\sqrt{x}+\sqrt{y}-2\right)\) 2. a) \(\left\{{}\begin{matrix}a\ge0\\a+b\ge1\end{matrix}\right.\). Min \(A=\frac{8a^2+b}{4a}+b^2\) b) \(\left\{{}\begin{matrix}a,b\ge0\\\left(a-b\right)^2=a+b+2\end{matrix}\right.\). Cmr: \(\left(1+\frac{a^3}{\left(b+1\right)^3}\right)\left(1+\frac{b^3}{\left(b+1\right)^3}\right)\le9\) c)...
Đọc tiếp

1. a) Tìm \(n\in N\)*, \(n>2008\) sao cho \(2^{2008}+2^{2012}+2^{2013}+2^{2014}+2^{2016}+2^n\) là số chính phương

b) tìm x,y > 0 thỏa mãn \(x^2+y^2=2\left(x+y\right)\left(\sqrt{x}+\sqrt{y}-2\right)\)

2. a) \(\left\{{}\begin{matrix}a\ge0\\a+b\ge1\end{matrix}\right.\). Min \(A=\frac{8a^2+b}{4a}+b^2\)

b) \(\left\{{}\begin{matrix}a,b\ge0\\\left(a-b\right)^2=a+b+2\end{matrix}\right.\). Cmr: \(\left(1+\frac{a^3}{\left(b+1\right)^3}\right)\left(1+\frac{b^3}{\left(b+1\right)^3}\right)\le9\)

c) \(x,y>0;\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=2020\). Min P = x + y

d) \(x,y,z>0;\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=6\). Min \(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

e) \(\left\{{}\begin{matrix}x,y,z>0\\x+y+z+4xyz=4\end{matrix}\right.\) Cmr: \(\left(1+xy+\frac{y}{z}\right)\left(1+yz+\frac{z}{x}\right)\left(1+zx+\frac{x}{y}\right)\ge27\)

f) \(\left\{{}\begin{matrix}x,y,z\ge1\\3x^2+4y^2+5z^2=52\end{matrix}\right.\). Min P = x + y + z

g) \(x,y>0\). Min \(P=\frac{2}{\sqrt{\left(2x+y\right)^3+1}-1}+\frac{2}{\sqrt{\left(x+2y\right)^3+1}-1}+\frac{\left(2x+y\right)\left(x+2y\right)}{4}-\frac{8}{3\left(x+y\right)}\)

6
23 tháng 2 2020

?Amanda?, Phạm Lan Hương, Phạm Thị Diệu Huyền, Vũ Minh Tuấn, Nguyễn Ngọc Lộc , @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @Trần Thanh Phương

giúp e với ạ! Cần trước 5h chiều nay! Cảm ơn mn nhiều!

NV
23 tháng 2 2020

Tranh thủ làm 1, 2 bài rồi ăn cơm:

1/ Đặt \(m=n-2008>0\)

\(\Rightarrow2^{2008}\left(369+2^m\right)\) là số chính phương

\(\Rightarrow369+2^m\) là số chính phương

m lẻ thì số trên chia 3 dư 2 nên ko là số chính phương

\(\Rightarrow m=2k\Rightarrow369=x^2-\left(2^k\right)^2=\left(x-2^k\right)\left(x+2^k\right)\)

b/

\(2\left(a^2+b^2\right)\left(a+b-2\right)=a^4+b^4\) \(\left(a+b>2\right)\)

\(\Rightarrow2\left(a^2+b^2\right)\left(a+b-2\right)\ge\frac{1}{2}\left(a^2+b^2\right)^2\)

\(\Rightarrow a^2+b^2\le4\left(a+b-2\right)\)

\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2\le0\Rightarrow a=b=2\)

\(\Rightarrow x=y=4\)