K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2016

Vì a, b, c là 3 cạnh của một tam giác nên a, b, c > 0 và a + b > c, b + c > a, c + a > b (ĐK).

Áp dụng BĐT Cauchy cho 2 số không âm, ta có :

\(a+b\ge2\sqrt{ab}\left(1\right)\)

\(b+c\ge2\sqrt{bc}\left(2\right)\)

\(c+a\ge2\sqrt{ca}\left(3\right)\)

Nhân (1), (2) và (3) theo vế, ta có :

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2^3.\sqrt{ab.bc.ca}=8abc\)

Mà theo đề bài (a+b)(b+c)(c+a)=8abc nên dấu "=" ở BĐT trên sẽ xảy ra, tức là khi và chỉ khi a = b = c (TMĐK) hay tam giác có 3 cạnh a, b, c thỏa mãn điều kiện trên là tam giác đều.

15 tháng 2 2016

bài này chỉ biết áp dụng cô-si thôi chứ ko biết chứng minh tam giác đều

NM
8 tháng 5 2021

ta có \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}.\)

áp dụng vào bài ta có\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9>6\)

8 tháng 5 2021

Ta có :\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=a\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+b\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+c\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

Nhận thấy \(\frac{a}{b}+\frac{b}{a}\ge2\)

Thật vậy ta có : \(\frac{a}{b}+\frac{b}{a}\ge2\)

<=> \(\frac{a^2+b^2}{ab}\ge2\Rightarrow a^2+b^2\ge2ab\Rightarrow a^2-2ab+b^2\ge0\Rightarrow\left(a-b\right)^2\ge0\left(\text{đúng}\right)\)

Tương tự ta chứng minh được \(\hept{\begin{cases}\frac{a}{c}+\frac{c}{a}\ge2\\\frac{b}{c}+\frac{c}{b}\ge2\end{cases}}\)

Khi đó \(3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge3+2+2+2\ge9>6\)(đpcm)

5 tháng 1 2020

A B C D E 1 2

Sửa đề: Trên cạnh BC lấy điểm E sao cho BE = BA (xem lại đoạn này)

CM: Xét t/giác ABD và t/giác EBD

có: AB = BE (gt)

  \(\widehat{B_1}=\widehat{B_2}\)(gt)

 BD : chung

=> t/giác ABD = t/giác EBD (c.g.c)

b) Ta có : t/giác ABD = t/giác EBD (cmt)

=> AD = DE (2 cạnh t/ứng)

=> \(\widehat{A}=\widehat{BED}=90^0\)(2 góc t/ứng) => \(DE\perp BC\)

c) Ta có: AB = BE (gt) => B \(\in\)đường trung trực của AE

 AD = DE (cmt) => D \(\in\)đường trung trực của AE

mà B \(\ne\)D => BD là đường trung trực của AE