K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 10 2024

Lời giải:

$2x^2+2y^2=5xy$

$\Leftrightarrow  2x^2-5xy+2y^2=0$

$\Leftrightarrow (2x-y)(x-2y)=0$

$\Leftrightarrow 2x=y$ hoặc $x=2y$

Do $0< x< y$ nên $2x=y$

Khi đó: \(P=\frac{2012x+2013y}{3x-2y}=\frac{2012x+2013.2x}{3x-2.2x}\\ =\frac{6038x}{-x}=-6038\)

NV
9 tháng 2 2020

\(2x^2-5xy+2y^2=0\)

\(\Leftrightarrow\left(2x-y\right)\left(x-2y\right)=0\Rightarrow\left[{}\begin{matrix}y=2x\\x=2y\end{matrix}\right.\)

\(y>x>0\Rightarrow y=2x\)

\(\Rightarrow\frac{2012x+2013y}{3x-2y}=\frac{2012x+2013.2x}{3x-2.2x}=-6038\)

2x2 + 2y2 = 5xy

=> 2x2 + 2y2 - 5xy = 0

=> (x - 2y)(2x - y)   = 0 

x = 2y (loại)

y = 2x

E = \(\dfrac{x+2x}{x-2x}\)=-3

19 tháng 4 2018

ta có\(2x^2+2y^2=5xy\)

\(\Leftrightarrow2x^2-5xy+2y^2=0\)\(\Leftrightarrow\left(x-4y\right)\left(2x-y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=4y\\2x=y\end{cases}}\)

\(0< x< y\)\(\Rightarrow x=4y\)là vô lý

\(\Rightarrow2x=y^{\left(1\right)}\)

Thế (1)vào biểu thức E ta được:

\(E=\frac{x+y}{x-y}=\frac{x+2x}{x-2x}=\frac{3x}{-x}=-3\)

Vậy biểu thức E có giá trị là 3

Xong rồi đấy nhớ k cho mình nhé!

19 tháng 11 2014

có 2.(x+y)2 = 2x2 + 2y2 +4xy =5xy + 4xy = 9xy

2(x-y)2 = 2x2 + 2y2 -4xy =5xy  - 4xy = xy

suy ra \(\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\frac{9xy}{xy}=9\Rightarrow\frac{x+y}{x-y}=3\)

hoặc \(\frac{x+y}{x-y}=-3\)

vì 0<x<y nên x-y<0 và x+y>0

suy ra A< 0.vậy A = -3

23 tháng 6 2020

Cho 2x2+2y2=5xy và 0<x<y. Tính E = x+y/x-y

Giải: 

 Cho 2x2+2y2=5xy và 0<x<y. => \(\frac{x}{y}< 1\)

Chia cả hai vế cho y^2 ta có: \(2\left(\frac{x}{y}\right)^2-5\frac{x}{y}+2=0\) (1)

Đặt: t = x/y ta có: 0 < t < 1 

(1) trở thành: \(2t^2-5t+2=0\)

<=> \(\left(2t^2-4t\right)+\left(-t+2\right)=0\)

<=> \(2t\left(t-2\right)-\left(t-2\right)=0\)

<=> \(\left(2t-1\right)\left(t-2\right)=0\)

<=> t = 1/2 ( tm) 

Hoặc  t = 2 loại 

Với t = 1/2 ta có: x/y = 1/2 

<=> y = 2x 

\(E=\frac{x+y}{x-y}=\frac{x+2x}{x-2x}=\frac{3x}{-x}=-3\)

13 tháng 11 2016

Đề đúng không thế bạn. 2x hay 2x2 thế

NV
22 tháng 12 2020

Chắc đề bài là \(Q=\dfrac{3}{9x^2+6xy+y^2}+\dfrac{3}{3x^2+6xy+2y^2}\)

Từ giả thiết ta có:

\(2x^3+2xy^2+xy^2+y^3=2\left(x^2+y^2\right)\)

\(\Leftrightarrow2x\left(x^2+y^2\right)+y\left(x^2+y^2\right)=2\left(x^2+y^2\right)\)

\(\Leftrightarrow2x+y=2\)

Do đó:

\(Q=3\left(\dfrac{1}{9x^2+6xy+y^2}+\dfrac{1}{3x^2+6xy+2y^2}\right)\)

\(Q\ge\dfrac{3.4}{12x^2+12xy+3y^2}=\dfrac{4}{\left(2x+y\right)^2}=1\)

\(Q_{min}=1\) khi \(\left\{{}\begin{matrix}2x+y=2\\9x^2+6xy+y^2=3x^2+6xy+2y^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{6}-2\\y=6-2\sqrt{6}\end{matrix}\right.\)

5 tháng 3 2016

ta có 

9x2+12xy+4y2=32xy

=>(3x+2y)2=32xy =>3x+2y=\(\sqrt{32xy}\)

mặt khác

9x2-12xy+4y2=8xy

=>(3x-2y)2=8xy  =>3x-2y=\(\sqrt{8xy}\)

vậy \(\frac{3x-2y}{3x+2y}=\frac{\sqrt{8xy}}{\sqrt{32xy}}\)

=0,5

5 tháng 3 2016

đề này có trong violimpic vòng 15

hôm qua mình đi thi có gặp bài này ko bt sai hay đúng nữa

mà hình như mình làm sai dấu