Bài 5 Cho ABC nhọn (AB<AC). Gọi D là trung điểm của AC. Trên tia đối của tia DB
lấy điểm M sao cho DB = DM.
a) Chứng minh AM = BC và AM // BC.
b) Gọi E là trung điểm AB. Trên tia đối của tia EC lấy điểm N sao cho EN = EC. Chứng
minh AN // BC và AN = BC.
c) Chứng minh M, A, N thẳng hàng và A là trung điểm của MN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét \(\left(O\right)\) có
\(\widehat{BDC}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{BDC}=90^0\)
Xét \(\left(O\right)\) có
\(\widehat{BEC}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{BEC}=90^0\)
b: Xét ΔABC có
BE là đường cao ứng với cạnh huyền AC
CD là đường cao ứng với cạnh huyền AB
BE cắt CD tại K
Do đó: AK\(\perp\)BC
4:
Trong một tam giác vuông thì hai góc nhọn có tổng số đo là 90 độ
mà hai góc nhọn đó bằng nhau
nên số đo của mỗi góc nhọn là: \(\dfrac{90}{2}=45^0\)
5:
Đặt \(\widehat{A}=a;\widehat{B}=b;\widehat{C}=c\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a-b=18\\b-c=18\\a+b+c=180\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+18\\c=b-18\\a+b+c=180\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=b+18\\c=b-18\\b+18+b+b-18=180\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=60\\a=78\\c=42\end{matrix}\right.\)
=>\(\widehat{A}=78^0;\widehat{B}=60^0;\widehat{C}=42^0\)
a: Xét ΔAHF vuông tại F và ΔABD vuông tại D có
góc HAF chung
=>ΔAHF đồng dạng vơi ΔABD
=>AH/AB=AF/AD
=>AH/AF=AB/AD
b: Xét ΔAHB và ΔAFD có
AH/AF=AB/AD
góc HAB chung
=>ΔAHB đồng dạng với ΔAFD
Bài 5: Cho tam giác ABC có ba góc nhọn, AB<AC. Kẻ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE. So sánh độ dài HB và HC.
Bài 6: Cho tam giác ABC có AB<AC. Tia phân giác của góc B và C cắt nhau tại I. Từ I vẽ IH vuông góc với BC. So sánh độ dài HB và HC.
Đọc tiếpĐúng 0Bình luận (2) vũ tiến đạt12 tháng 11 2017 lúc 12:52
ta có hình vẽ
a) Do P là trung điểm của DE (gt), Q là trung điểm của BE (gt) nên PQ là đường trung bình của tam giác BED, suy ra PQ=1/2BD.
Chứng minh tương tự MN =1/2 BD, NP = 1/2CE và MQ = 1/2CE.
Mặt khác BD = CE (gt)
Do đó MN = NP = PQ = QM
Vậy tứ giác MNPQ là hình thoi.
b) Do PN // AC, PQ // AB nên (hai góc có cạnh tướng ứng song song).
Gọi giao điểm của MP với AB là R, ta có ...
a) Xét tam giác ABC và tam giác AEF có:
AB = AE (gt).
AC = AF (gt).
^BAC = ^EAF (2 góc đối đỉnh).
=> Tam giác ABC = Tam giác AEF (c - g - c).
b) Tam giác ABC = Tam giác AEF (cmt).
=> ^ABC = ^AEF (2 góc tương ứng).
Mà 2 góc này ở vị trí so le trong.
=> BC // EF (dhnb).
Chúc bạn học tốt!
a: Xét tứ giác ABCM có
D là trung điểm của AC
D là trung điểm của BM
Do đó: ABCM là hình bình hành
Suy ra: AM//BC và AM=BC