K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2016

moi hok lop 6

9 tháng 5 2021

giúp mình câu b với các bạn ơi

 

góc AEB=góc ADB=90 độ

=>AEDB nội tiếp

góc CDH+góc CEH=180 độ

=>CEHD nội tiếp

Xét tứ giác DHEC có 

\(\widehat{HDC}\) và \(\widehat{HEC}\) là hai góc đối

\(\widehat{HDC}+\widehat{HEC}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: DHEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

a: Xét tứ giác BDHF có \(\widehat{BDH}+\widehat{BFH}=90^0+90^0=180^0\)

=>BDHF là tứ giác nội tiếp

Xét tứ giác AFDC có \(\widehat{AFC}=\widehat{ADC}=90^0\)

nên AFDC là tứ giác nội tiếp

Sửa đề; CEHD

Xét tứ giác CEHD có

\(\widehat{CEH}+\widehat{CDH}=90^0+90^0=180^0\)

=>CEHD là tứ giác nội tiếp

Xét tứ giác ABDE có \(\widehat{AEB}=\widehat{ADB}=90^0\)

nên ABDE là tứ giác nội tiếp

b: Ta có: \(\widehat{FDH}=\widehat{FBH}\)(FBDH là tứ giác nội tiếp)

\(\widehat{EDH}=\widehat{ECH}\)(ECDH là tứ giác nội tiếp)

mà \(\widehat{FBH}=\widehat{ECH}\left(=90^0-\widehat{FAC}\right)\)

nên \(\widehat{FDH}=\widehat{EDH}\)

=>DH là phân giác của góc EDF

30 tháng 1 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Trong ∆ EBC , ta có: M là trung điểm EB (tính chất hình vuông)

I trung điểm BC (gt)

Nên MI là đường trung bình của ΔEBC

⇒ MI = 1/2 EC và MI // EC (tính chất đường trung bình của tam giác).

Trong  ∆ BCH, ta có: I trung điểm BC (gt)

N trung điểm của CH (tính chất hình vuông)

Nên NI là đường trung bình của  ∆ BCH

⇒ NI = 1/2 BH và NI // BH (tính chất đường trung bình của tam giác)

Mà BH = CE (chứng minh trên)

Suy ra: MI = NI nên  ∆ INM cân tại I

MI // EC (chứng minh trên)

EC ⊥ BH (chứng minh trên)

Suy ra: MI ⊥ BH. Mà NI // BH (chứng minh trên)

Suy ra: MI ⊥ NI hay ∠ (MIN) = 90 0

Vậy  ∆ MIN vuông cân tại I.

a: góc AEB=góc ADB=90 độ

=>AEDB nội tiếp

b,c: M ở đâu vậy bạn?

13 tháng 3 2022

Xét tứ giác ABDE:

\(\widehat{AEB}=90^o\left(AE\perp BE\right).\\ \widehat{ADB}=90^o\left(AD\perp BD\right).\\ \Rightarrow\widehat{AEB}=\widehat{ADB}.\)

Mà 2 đỉnh E, D kề nhau, cùng nhìn cạnh AB.

\(\Rightarrow\) Tứ giác ABDE nội tiếp (dhnb).

Xét tứ giác HDCE:

\(\widehat{HEC}=90^o\left(DE\perp EC\right).\\ \widehat{HDC}=90^o\left(HD\perp DC\right).\\ \Rightarrow\widehat{HEC}+\widehat{HDC}=180^o.\)

Mà 2 góc này ở vị trí đối nhau.

\(\Rightarrow\) Tứ giác HDCE nội tiếp (dhnb).

Tứ giác ABDE nội tiếp (cmt).

\(\Rightarrow\widehat{EBD}=\widehat{BAD}.\) 

Xét \(\Delta DBH\) và \(\Delta DAC:\)

\(\widehat{BDH}=\widehat{ADC}\left(=90^o\right).\)

\(\widehat{HBD}=\widehat{CAD}\left(\widehat{EBD}=\widehat{BAD}\right).\)

\(\Rightarrow\Delta DBH\sim\Delta DAC\left(g-g\right).\)

\(\Rightarrow\dfrac{DB}{DA}=\dfrac{DH}{DC}.\\ \Rightarrow DB.DC=DH.DA.\)

17 tháng 3 2022

kèm hình luôn được không bạn ơi