K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2021

Áp dụng t/c dtsbn ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{6}=\dfrac{x+y+z}{3+4+6}=\dfrac{52}{13}=4\)

\(\dfrac{x}{3}=4\Rightarrow x=12\\ \dfrac{y}{4}=4\Rightarrow y=16\\ \dfrac{z}{6}=4\Rightarrow z=24\)

\(\Rightarrow x-y+z=12-16+24=20\)

2 tháng 12 2021

ok boy

2 tháng 12 2021

Áp dụng t/c dtsbn ta có:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y+z}{3+4+6}=\dfrac{52}{13}=4\)

\(\dfrac{x}{3}=4\Rightarrow x=12\\ \dfrac{y}{4}=4\Rightarrow y=16\\ \dfrac{z}{5}=4\Rightarrow z=20\)

\(\Rightarrow x-y+z=12-16+20=16\)

22 tháng 12 2021

3r3reR

20 tháng 10 2015

Dễ chứng minh được: \(xy\le\frac{x^2+y^2}{2};yz\le\frac{y^2+z^2}{2};zx\le\frac{z^2+x^2}{2}\)

Do đó \(xy+yz+zx\le x^2+y^2+z^2\Leftrightarrow3\left(xy+yz+zx\right)\le x^2+y^2+z^2+2xy+2yz+2zx\)

\(3\left(xy+yz+zx\right)\le\left(x+y+z\right)^2\Leftrightarrow xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=3\)

\(\Rightarrow A_{max}=3\Leftrightarrow x=y=z=1\)

3 tháng 8 2015

1. ta có 

\(3^{x+2}+4.3^{x+1}+3^{x-1}\)=66

\(3^x.3+3^x.3.4+3^x:3\)=66

3x.3+3x.12+3x.1/3=66

3x.(3+12+1/3)=66

3x.64/3=66

3x=66:64/3

3x=2187

3x=37

=> x=7

2.\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{9}=\frac{y}{12}\) (cung nhân cả hai phân số với 1/3)

  \(\frac{y}{6}=\frac{z}{8}=>\frac{y}{12}=\frac{z}{16}\) (cùng nhân cả hai phân số với 1/2)

từ đây suy ra 

 

 

 

 

29 tháng 3 2021

3+12+1/3=64/3 ???? vô lí

lấy máy tính thử tính coi

25 tháng 12 2016

\(\orbr{\begin{cases}y=\frac{3}{x}\\z=\frac{4}{x}\end{cases}\Rightarrow\frac{12}{x^2}=6\Rightarrow x^2=2}\)

\(\orbr{\begin{cases}x=\frac{3}{y}\\z=\frac{6}{y}\end{cases}\Rightarrow\frac{18}{y^2}=4\Rightarrow y^2=\frac{9}{2}}\)

\(\orbr{\begin{cases}x=\frac{4}{z}\\y=\frac{6}{z}\end{cases}\Rightarrow\frac{24}{z^2}=3\Rightarrow z^2=8}\)

\(A=\frac{1}{2}\left(2+\frac{9}{2}+8\right)=\frac{4+9+16}{4}=\frac{29}{4}\) 

17 tháng 12 2016

\(\hept{\begin{cases}\frac{x}{y}=\frac{4}{7}\\\frac{y}{z}=\frac{14}{3}\end{cases}}\Rightarrow\frac{x}{z}=\frac{8}{3}\)

\(\Rightarrow\frac{x+y}{z}=\frac{x}{z}+\frac{y}{z}=\frac{14}{3}+\frac{8}{3}=\frac{22}{3}\)