cho \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
tính P = \(\frac{a+b}{2c}+\frac{b+c}{3a}\frac{c=a}{4b}\)
GIÚP MÌNH NHÉ CÁC BẠN. CẢM ƠN CÁC BẠN RẤT NHIỀU
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:P=(\(\frac{3a}{b+c}\)\(\frac{3a}{b+c}\)+3)+(\(\frac{4b}{a+c}\)+4)+(\(\frac{5c}{a+b}\)+5)-12
P=(a+b+c)(\(\frac{3}{b+c}\)+\(\frac{4}{c+a}\)+\(\frac{5}{a+b}\))-12
Áp dụng BĐT Bunhiacopxki
P=\(\frac{1}{2}\)((b+c)+(c+a)+(a+b))(\(\frac{3}{b+c}\)+\(\frac{4}{c+a}\)+\(\frac{5}{a+b}\))-12\(\ge\)\(\frac{\left(\sqrt{3}+2+\sqrt{5}\right)^2}{2}\)-12
Dấu''='' xảy ra \(\Leftrightarrow\)\(\frac{b+c}{\sqrt{3}}\)=\(\frac{c+a}{2}\)=\(\frac{a+b}{\sqrt{5}}\)
Bài 1:
Đặt \(a^2=x;b^2=y;c^2=z\)
Ta có:\(\sqrt{\frac{x}{x+y}}+\sqrt{\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}}\le\frac{3}{\sqrt{2}}\)
Áp dụng BĐT cô si ta có:
\(\sqrt{\frac{x}{x+y}}=\frac{1}{\sqrt{2}}\sqrt{\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}\frac{3\left(x+z\right)}{2\left(x+y+z\right)}}\)
\(\le\frac{1}{2\sqrt{2}}\left[\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}+\frac{3\left(x+z\right)}{2\left(x+y+z\right)}\right]\)
Tương tự với \(\sqrt{\frac{y}{y+z}}\)và \(\sqrt{\frac{z}{z+x}}\)
Cộng lại ta được:
\(\frac{\sqrt{2}}{3}\left[\frac{x\left(x+y+z\right)}{\left(x+y\right)\left(x+z\right)}+\frac{y\left(x+y+z\right)}{\left(y+z\right)\left(y+x\right)}+\frac{z\left(x+y+z\right)}{\left(z+x\right)\left(z+y\right)}\right]+\frac{3}{2\sqrt{2}}\le\frac{3}{2\sqrt{2}}\)
Sau đó bình phương hai vế rồi
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)đẳng thức đúng
Vậy...
Bài 2:
Trước hết ta chứng minh bất đẳng thức sau:
\(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\le\frac{1}{3}\)
Nhân cả hai vế bđt với 4(a+b+c)4(a+b+c) rồi thu gọn ta được bđt sau:
\(\frac{4a\left(a+b+c\right)}{4a+4b+c}+\frac{4b\left(a+b+c\right)}{4b+4c+a}+\frac{4c\left(a+b+c\right)}{4c+4a+b}\)\(\le\frac{4}{3}\left(a+b+c\right)\)
\(\left[\frac{4a\left(a+b+c\right)}{4a+4b+}-a\right]+\left[\frac{4b\left(a+b+c\right)}{4b+4c+a}-b\right]+\left[\frac{4c\left(a+b+c\right)}{4c+4a+b}-c\right]\le\frac{a+b+c}{3}\)
\(\frac{ca}{4a+4b+c}+\frac{ab}{4b+4c+a}+\frac{bc}{4c+4a+b}\le\frac{a+b+c}{9}\)
Áp dụng bđt cauchy-Schwarz ta có \(\frac{ca}{4a+4b+c}=\frac{ca}{\left(2b+c\right)+2\left(2a+b\right)}\)\(\le\frac{ca}{9}\left(\frac{1}{2b+c}+\frac{2}{2a+b}\right)\)
Từ đó ta có:
\(\text{∑}\frac{ca}{4a+4b+c}\le\frac{1}{9}\text{∑}\left(\frac{ca}{2b+c}+\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ab}{2b+c}\right)=\frac{a+b+c}{9}\)
Đặt VT=A rồi áp dụng bđt cauchy-Schwarz cho VT ta có
\(T^2\le3\left(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\right)\)\(\le3\cdot\frac{1}{3}=1\Leftrightarrow T\le1\)
Dấu = xảy ra khi a=b=c
c bạn tự làm nhé mình mệt rồi :D
sr tui ko có câu hỏi tương tự tui chỉ có câu hỏi y hệt thôi Xem câu hỏi
Theo đề bài : a3 + b3 +c3 = 3abc và a;b;c >0 nên : a = b = c (cái này mk k bịa ra nah ) có quy tắc nha !
Vậy biểu thức trên sẽ bằng 1 + 1 +1 = 3
Chúc bn hc tốt :3
\(\frac{1}{3a+2b+c}\le\frac{1}{36}\left(\frac{3}{a}+\frac{2}{b}+\frac{1}{c}\right)\) )cái này bn tự cm nha bằng hệ quả của bunhia
tương tự :\(\frac{1}{3b+2c+a}\le\frac{1}{36}\left(\frac{3}{b}+\frac{2}{c}+\frac{1}{a}\right)\)
\(\frac{1}{3c+2a+b}\le\frac{1}{36}\left(\frac{3}{c}+\frac{2}{a}+\frac{1}{b}\right)\)
Công tất cả các vế vs nhau:\(\frac{1}{3a+2b+c}+\frac{1}{3b+2c+a}+\frac{1}{3c+2a+b}\le\frac{1}{36}\left(\frac{6}{a}+\frac{6}{b}+\frac{6}{c}\right)\)=1/36 x96=8/3
à còn phần mik dùng bunhia sao ra dc thế nè :\(\frac{1}{3a+2b+c}=\frac{1}{a+a+a+b+b+c}\)
\(=\frac{1}{36}\left(\frac{36}{a+a+a+b+b+c}\right)\le\frac{1}{36}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)\(=\frac{1}{36}\left(\frac{3}{a}+\frac{2}{b}+\frac{1}{c}\right)\)
xét a+b+c=0, thì sẽ tính được \(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
rồi thay vào tính
Xét a+b+c khác 0
Từ GT =>\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
=>\(\hept{\begin{cases}2a=b+c\\2b=c+a\\2c=a+b\end{cases}}\)
Rồi thay vào và đễàng tính
^_^
Ta có:
\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\Leftrightarrow b=\frac{2}{\frac{1}{a}+\frac{1}{c}}=\frac{2ac}{a+c}\)
Thế \(b=\frac{2ac}{a+c}\) vào M, ta được:
\(M=\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}+\frac{c+\frac{2ac}{a+c}}{2c-\frac{2ac}{a+c}}=\frac{1+\frac{2c}{a+c}}{2-\frac{2c}{a+c}}+\frac{1+\frac{2a}{a+c}}{2-\frac{2a}{a+c}}\)
\(M=\frac{\left(a+c\right)+2c}{2\left(a+c\right)-2c}+\frac{\left(a+c\right)+2a}{2\left(a+c\right)-2a}=\frac{a+3c}{2a}+\frac{3a+c}{2c}\)
\(M+2=\frac{a+3c}{2a}+1+\frac{3a+c}{2c}+1=\frac{3a+3c}{2a}+\frac{3a+3c}{2c}=\frac{3}{2}\left(a+c\right)\left(\frac{1}{a}+\frac{1}{c}\right)\)
\(M+2=\frac{3}{2}\left(1+\frac{a}{c}+\frac{c}{a}+1\right)=\frac{3}{2}\left(2+\frac{a}{c}+\frac{c}{a}\right)\)
Xét \(\frac{a}{c}+\frac{c}{a}\ge2\Leftrightarrow...\)(bạn tự biến đổi tương đương để chứng minh nó nhé)
(ĐK xảy ra dấu "=": a=c)
Do đó \(M+2=\frac{3}{2}\left(1+\frac{a}{c}+\frac{c}{a}+1\right)=\frac{3}{2}\left(2+\frac{a}{c}+\frac{c}{a}\right)\ge\frac{3}{2}\left(2+2\right)=6\Leftrightarrow M\ge4\)
Vậy GTNN của \(M=4\)khi \(a=c\Leftrightarrow\frac{2}{b}=\frac{2}{a}\Leftrightarrow b=a=c\)
Chúc bạn học tốt!
P/S: bài này khó thật đấy! Mình chuyên toán 9 mà giải hết nửa tiếng mới xong :D!