a) A = 2 + 22 + 222 + 2222 + ... + 22...2(có 50 chữ số 2)
b) B = 1/11.2.3 .1/11.2.3+ 1/12.3.4 + 1/13.4.5 + ... + 1/197.98.99 + 1/198.99.100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 1.2.3 + 1 2.3.4 + 1 3.4.5 + ... + 1 98.99.100 = 1 1.2 − 1 2.3 + 1 2.3 − 1 3.4 + ... + 1 98.99 − 1 99.100 = 1 1.2 − 1 99.100 = 4949 19800
a, 2
22
+ 222
2222
22222
2 x 5 + 2x 4 x 10 + 2 x 3 x 100 + 2 x 2 x 1000 + 2 x 1 x 10000
2 x (5+4x10+3x100+2x1000+1x10000)
2x [5x100 + (5-1)x101 + (5-2) x102 + (5-3) x103 + (5-4) x104]
Ta có công thức: Nếu số hạng là các chữ số n và có m số hạng:
n x (mx100 + (m-1)x101 + (m-2) x102 +……….+2 x 10m-2 + 1x10m-1
Tính tổng trên:
2 x (10x1 + 9x10 + 8x100 + 7x1000 + 6x10000 + 5x100000 + …+ 1x10000000000) =
2 x (10+90+800+7000+60000+500000+4000000+30000000+200000000+1000000000) =
2 x 1234567900 = 2 469 135 800
b, tương tự câu a,
b) \(2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{97.98.99}+\frac{2}{98.99.100}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\)
\(=\frac{1}{1.2}-\frac{1}{99.100}=\frac{4949}{9900}\Rightarrow B=\frac{4949}{9900}:2=\frac{4949}{19800}\)