K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2021

\(\hept{\begin{cases}x^3=y^3+18\\y^3=x^3+18\end{cases}}\Leftrightarrow\hept{\begin{cases}x^3-y^3=18\\y^3-x^3=18\end{cases}}\)

Lây pt 1 + pt2 : 

\(\left(x-y\right)\left(x^2+xy+y^2\right)+\left(y-x\right)\left(y^2+xy+x^2\right)=36\)

\(\Leftrightarrow\left(x^2+xy+y^2\right)\left(x-y+y-x\right)=36\)

\(\Leftrightarrow\left(x^2+xy+y^2\right)0=36\Leftrightarrow0\ne36\)

Vậy hệ phương trình vô nghiệm 

21 tháng 2 2021

Lấy hai phương trình cộng nhau rồi chuyển vế sẽ thấy điều thú ví=) 36=0=)))

30 tháng 11 2016

\(a,\hept{\begin{cases}\frac{x}{3}-\frac{y}{4}=2\\\frac{2x}{5}+y=18\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{3}x-\frac{1}{4}\left(18-\frac{2}{5}x\right)=2\\y=18-\frac{2}{5}x\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{3}x-\frac{9}{2}+\frac{1}{10}x=2\\y=18-\frac{2}{5}x\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{13}{30}x=\frac{13}{2}\\y=18-\frac{2}{5}x\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=15\\y=18-\frac{2}{5}.15\end{cases}\Leftrightarrow\hept{\begin{cases}x=15\\y=12\end{cases}}}\)

\(b,\hept{\begin{cases}\frac{3}{4}x+\frac{2}{5}y=2,3\\x-\frac{3y}{5}=0,8\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{3}{4}\left(0,8+\frac{3}{5}y\right)+\frac{2}{5}y=2,3\\x=0,8+\frac{3}{5}y\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}0,6+\frac{9}{20}y+\frac{2}{5}y=2,3\\x=0,8+\frac{3}{5}y\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{17}{20}y=1,7\\x=0,8+\frac{3}{5}y\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2\\x=0,8+\frac{3}{5}.2\end{cases}\Leftrightarrow\hept{\begin{cases}y=2\\x=2\end{cases}}}\)

10 tháng 9 2020

1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)

\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)

+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)

+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:

\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)

Vậy hệ có nghiệm (1;1),(-1;-1).

2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)

\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)

Vậy hệ có nghiệm (1;1).

25 tháng 1 2017

gọi \(\frac{1}{2x-y}\)là \(a\)\(\frac{1}{x-2y}\)là \(b\)

Ta có hệ phương trình: \(\hept{\begin{cases}2a+3b=\frac{1}{2}\\2a-b=\frac{1}{18}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=\frac{1}{12}\\b=\frac{1}{9}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{2x-y}=\frac{1}{12}\\\frac{1}{x-2y}=\frac{1}{9}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x-y=12\\x-2y=9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)

22 tháng 2 2018

bình phương pt 1 rồi trừ từng vế của pt đó với pt 2 ra một bình phương rồi tính được x,y

Ta có : \(x+y=3+\sqrt{xy}\)

\(\Leftrightarrow x+y-3=\sqrt{xy}\)

\(\Leftrightarrow\left(x+y-3\right)^2=\sqrt{xy}^2\)

\(\Leftrightarrow x^2+y^2-9+2xy-6y-6x=xy\)

\(\Leftrightarrow18-9+2xy-6y-6x=xy\)

\(\Leftrightarrow9+2xy-6y-6x=xy\)

\(\Leftrightarrow9+2xy-6y-6x-xy=0\)

\(\Leftrightarrow9+xy-6y-6x=0\)

\(\Leftrightarrow9+xy-6y-6x=0\)

22 tháng 7 2019

Điều kiện xác định x#1; y#3.Đặt: \(\hept{\begin{cases}\frac{1}{x-1}=a\\\frac{1}{y-3}=b\end{cases}}\Rightarrow\hept{\begin{cases}5a+b=10\\a-3b=18\end{cases}}\Rightarrow\hept{\begin{cases}15a+3b=30\\a-3b=18\end{cases}}\)

Cộng theo vế: \(15a+3b+a-3b=48\Rightarrow16a=48\Rightarrow a=3\Rightarrow b=-5\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{x-1}=3\Rightarrow x=\frac{4}{3}\\\frac{1}{y-3}=-5\Rightarrow y=-\frac{14}{5}\end{cases}}\)

22 tháng 7 2019

\(\hept{\begin{cases}\frac{5}{x-1}+\frac{1}{y-3}=10\\\frac{1}{x-1}-\frac{3}{y-3}=18\end{cases}}\)

Đặt: \(\frac{1}{x-1}=a\left(a>0\right);\frac{1}{y-3}=b\left(b>0\right)\)

Khi đó hpt có dạng:

\(\hept{\begin{cases}5a+b=10\\a-3b=18\end{cases}\Rightarrow\hept{\begin{cases}a=3\\b=-5\end{cases}}\left(Tm\right)}\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{x-1}=3\\\frac{1}{y-3}=-5\end{cases}}\Rightarrow\hept{\begin{cases}3\left(x-1\right)=1\\-5\left(y-3\right)=1\end{cases}}\Rightarrow\hept{\begin{cases}3x-3=1\\-5y+15=1\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{14}{5}\end{cases}}\)

18 tháng 7 2018

1) \(\left(x+3y\right)-\left(x+y\right)=1-5\)

\(2y=-4\Rightarrow y=-2\)

                    \(\Rightarrow x=5-\left(-2\right)=7\)( cái này mk tự nghĩ cho nhanh )

2) \(3x-y=2\Rightarrow y=3x-2\)Thay vào vế 2 =>

\(x+3x-2=6\)

\(4x=8\Rightarrow x=2\)

               \(\Rightarrow y=6-2=4\)

3)  \(x+2y=5\Rightarrow2y=5-x\)Thay vào vế 2

\(3x-5+x=3\)

\(4x=8\Rightarrow x=2\)

                \(2y=3\Rightarrow y=\frac{3}{2}\)

4) \(2x-y=5\Rightarrow2x=5+y\)( Thay vào vế 2 )

\(5+y+3y=1\)

\(4y=-4\Rightarrow y=-1\)

                   \(\Rightarrow2x=4\Rightarrow x=2\)

mk làm như vậy ko biết đúng hay sai, bạn thông cảm ...