Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,\hept{\begin{cases}4\left(x+y\right)=5\left(x-y\right)\\\frac{40}{x+y}+\frac{40}{x-y}=9\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4\left(x+y\right)^2\left(x-y\right)-5\left(x-y\right)^2\left(x+y\right)=0\\40\left(x-y\right)+40\left(x+y\right)-9\left(x-y\right)\left(x+y\right)=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(x^2-y^2\right)\left[4\left(x+y\right)-5\left(x-y\right)\right]=0\\80x-9\left(x^2-y^2\right)=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(x+y\right)\left(x-y\right)\left(9y-x\right)=0\\9\left(\frac{80}{9}x-x^2+y^2\right)=0\end{cases}}\)
\(\Rightarrow.......\)
Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!
Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ
Điều kiện xác định x#1; y#3.Đặt: \(\hept{\begin{cases}\frac{1}{x-1}=a\\\frac{1}{y-3}=b\end{cases}}\Rightarrow\hept{\begin{cases}5a+b=10\\a-3b=18\end{cases}}\Rightarrow\hept{\begin{cases}15a+3b=30\\a-3b=18\end{cases}}\)
Cộng theo vế: \(15a+3b+a-3b=48\Rightarrow16a=48\Rightarrow a=3\Rightarrow b=-5\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{x-1}=3\Rightarrow x=\frac{4}{3}\\\frac{1}{y-3}=-5\Rightarrow y=-\frac{14}{5}\end{cases}}\)
\(\hept{\begin{cases}\frac{5}{x-1}+\frac{1}{y-3}=10\\\frac{1}{x-1}-\frac{3}{y-3}=18\end{cases}}\)
Đặt: \(\frac{1}{x-1}=a\left(a>0\right);\frac{1}{y-3}=b\left(b>0\right)\)
Khi đó hpt có dạng:
\(\hept{\begin{cases}5a+b=10\\a-3b=18\end{cases}\Rightarrow\hept{\begin{cases}a=3\\b=-5\end{cases}}\left(Tm\right)}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{x-1}=3\\\frac{1}{y-3}=-5\end{cases}}\Rightarrow\hept{\begin{cases}3\left(x-1\right)=1\\-5\left(y-3\right)=1\end{cases}}\Rightarrow\hept{\begin{cases}3x-3=1\\-5y+15=1\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{14}{5}\end{cases}}\)