Tìm giá trị nhỏ nhất của M=x(x+1)(x+2)(x+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=x^2+2x+2=\left(x^2+x+x+1\right)+1\)
\(M=x\left(x+1\right)+1\left(x+1\right)+1=\left(x+1\right)\left(x+1\right)+1\)
\(M=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\) với mọi x
=>\(\left(x+1\right)^2+1\ge1\) với mọi x
=>GTNN của M là 1
Dấu "=" xảy ra <=> x+1=0<=>x=-1
\(M=\left|\frac{1}{3}-x\right|+5\ge5\forall x\)
Dấu ''='' xảy ra khi x = 1/3
Vậy GTNN của M bằng 5 tại x = 1/3
\(N=-\left|x+\frac{2}{3}\right|+2\le2\forall x\)
Dấu ''='' xảy ra khi x = -2/3
Vậy GTLN của N bằng 2 tại x = -2/3
tìm giá trị nhỏ nhất của M=5+|1/3-x|
Vì với mọi x (Giá trị tuyệt đối của một số luôn không âm)
Nên với mọi x
Ta có:
Vậy với x =
nhân cái đầu với cái cuối, hai cái giữa nhân vào nhau rồi đặt ẩn là ra
a: Khi x=-2 thì \(M=3-\left(-2-1\right)^2=3-9=-6\)
Khi x=0 thì \(M=3-\left(0-1\right)^2=2\)
Khi x=3 thì \(M=3-\left(3-1\right)^2=3-2^2=-1\)
b: Để M=6 thì \(3-\left(x-1\right)^2=6\)
\(\Leftrightarrow\left(x-1\right)^2=-3\)(loại)
c: \(M=-\left(x-1\right)^2+3\le3\forall x\)
Dấu '=' xảy ra khi x=1
a, Thay x=-2 vào M ta có:
\(M=3-\left(-2-1\right)^2=3-\left(-3\right)^2=3-9=-6\)
Thay x=0 vào M ta có:
\(M=3-\left(0-1\right)^2=3-\left(-1\right)^2=3-1=2\)
Thay x=3 vào M ta có:
\(M=3-\left(3-1\right)^2=3-2^2=3-4=-1\)
b, Để M=6 thì:
\(3-\left(x-1\right)^2=6\\ \Leftrightarrow\left(x-1\right)^2=-3\left(vô.lí\right)\)
c, Ta có: \(\left(x-1\right)^2\ge0\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
\(\Rightarrow M=3-\left(x-1\right)^2\le3\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
Vậy \(M_{max}=3\Leftrightarrow x=1\)
Ta lập bảng xét dấu:
Từ bảng =>Mmax=0 <=>x=-3;-2;-1;0
Xin lỗi viết nhầm không phải Mmax mà là Mmin