cmr 1-1/2^2 -1/3^2-...-1/2014^2 >1/2014
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......+\dfrac{1}{10^2}\)
\(D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{9.10}\)
\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)
\(D< 1-\dfrac{1}{10}\Leftrightarrow D< 1\left(đpcm\right)\)

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.......+\frac{1}{2^{2014}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+........+\frac{1}{2^{2013}}\)
\(A=1-\frac{1}{2^{2014}}< 1\left(đpcm\right)\)

Đặt A= 1/2+1/2^2+.......+1/2^2014
2A=1+1/2+1/2^2+......+1/2^2013
2A-A= 1-1/2^2014<1
hay A<1=>ĐPCM

Ta có A=1-(\(\frac{1}{2}\)+\(\frac{1}{2^2}\)+....+\(\frac{1}{2^{2014}}\))
Đặt B=\(\frac{1}{2}\)+\(\frac{1}{2^2}\)+...+\(\frac{1}{2^{2014}}\)\(\Rightarrow\)2B=1+\(\frac{1}{2}\)+...+\(\frac{1}{2^{2013}}\)
\(\Leftrightarrow\)2B-B=(1+\(\frac{1}{2}\)+...+\(\frac{1}{2^{2013}}\))-(\(\frac{1}{2}\)+\(\frac{1}{2^2}\)+...+\(\frac{1}{2^{2014}}\))=1-\(\frac{1}{2^{2014}}\)
Suy ra A=\(\frac{1}{2^{2014}}\)>\(\frac{1}{2^{2015}}\)(đpcm)